Enlisting Effector Cells to Clear HIV Infection

David Margolis MD
UNC HIV Cure Center

CARE Collaboratory of AIDS Researchers for Eradication

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Disclosures

• Gilead: common stock
• Merck: consulting
• Will discuss the experimental use of licensed drugs, but no treatment recommendations are made
Other Challenges:

• Clearance of infected cells
• Clearance of virions
• Complete block of new infection

A first step to eliminate latent HIV infection

A second step to eliminate latent HIV infection

Immunotherapy

Latency Reversal

Latently Infected Cells
Aiming for sustained “remission” off ART

Cohen J. Science 2014
Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy

14 daily doses of vorinostat

Elliot PLoS Path 2014

Thrice weekly cycles of Panobinostat

Rasmussen Lancet ID 2014

Weekly Romidepsin

Sogaard PLoS Path 2015

Challenges to clearing persistent infection after latency reversal

- Recent absence of antigen – low frequency of HIV-specific antiviral responses
- Immune dysfunction, deletion, or exhaustion
- Archived viral diversity, including immune escape
- Viral antigen is rare, dispersed, compartmentalized, and may be transient
- Latency Reversing Agents (LRAs) are host-targeted, and alone or in combination may alter antiviral immune response
Two step problem:

Persistent HIV infection despite ART

- Given assay variance, a more than 6-fold RCI decrease would have likelihood 0.023 (2.3%)
- Therefore a measurable goal is therapy that can reduce the latent reservoir by half a log
From Siliciano Nature Med. 2003
Testing interventions in vivo

LRAs
Immunodulators
HIV vaccines
Novel approaches

Reduction in:
- Resting CD4 cell infection
- Low-level viremia

Baseline

- Leukapheresis for QVOA and ca-HIV RNA
- SCA
- Immune assays
- Host cell assays & biomarkers
- **Novel assays, eg. Quanterix Simoa**

After intervention

- Leukapheresis for QVOA and ca-HIV RNA
- SCA
- Immune assays
- Host cell assays & biomarkers
- **Novel assays, eg. Quanterix Simoa**
Viral Inhibition Assay to Assess Effector Clearance Using Lymphocytes from HIV-Infected ART-Suppressed Patients

1. Deplete CD8$^+$ cells from patient PBMCs
2. Activate 2-3 days
3. Infect with autologous reservoir (AR) virus [obtained from prior outgrowth assay using patients’s own resting CD4$^+$ T cells following mitogenic stimulation]
4. Incubate ± Autologous effector cells or reagents
5. Co-culture for 7 days
6. Supernatant harvested for HIV-1 gag p24 ELISA
Ex-Vivo Latency Clearance Assay:

A modified quantitative viral outgrowth assay

PBMCs

CD8+ by negative selection

Resting CD4+ cells by negative selection

Culture Resting CD4+ cells

Latency Reversing Agent

Add Effectors

CD8+, HXTCs, or DARTs

or

Limiting Dilution Co-culture

Measure HIV Production at 2 weeks

or

No Effectors
HIV specific Ex-vivo Expanded T cells (HXTCs)

PBMC → Immature DC + gag/pol/nef peptides → Mature DC

PHA blast + K562 Irradiated

Mature DC + IL-7, IL-15

CD80/86 4-IBBL

Mature DC + CD32

Irradiated

PHA blast

ARVs

HIV Specific CTL
HXTCs Reduce Recovery of Virus from autologous resting CD4+ T cells stimulated with:

![Graph showing the number of positive wells (out of 12 total) for different patients and conditions.](image)

Sung et al. JID 2015
Dual Affinity ReTargeting (DARTs) Molecules for HIV

- Do not require pre-existing HIV specificity
 - Not impacted by archived CTL escape variants

- Anti-Env arm based on well characterized mAbs with
 - Breadth in binding to CD4 inducible epitopes and ADCC activity
 - Little to no binding to free virions
Targeting Conserved Env Epitopes on HIV-Infected Cells with non-neutralizing ADCC-mediating mAbs

V1-V2 loop
PGT145

C1-C4 (gp120 cluster A)
A32

Glycan-V3 loop
PGT121

CD4-binding site
VRC01

gp41 cluster I
7B2

MPER
10E8
A32 and 7B2 mAbs: Broad and Potent mediators of ADCC

- 25 mAbs tested for Antibody Dependent Cellular Cytotoxicity activity against 22 IMCs
- 7B2 (gp41) and A32 (gp120) chosen based on potency and breadth of specificity

<table>
<thead>
<tr>
<th>IMC Recognized</th>
<th>A32</th>
<th>7B2</th>
<th>pos. ctl.</th>
<th>neg. ctl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>95</td>
<td>91</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Mean Max %SL</td>
<td>43.69</td>
<td>39.58</td>
<td>48.25</td>
<td>9.73</td>
</tr>
<tr>
<td>Range %SL</td>
<td>12-86</td>
<td>15-74</td>
<td>24-84</td>
<td>2-22</td>
</tr>
</tbody>
</table>

Sung, et al. JCI 2015
HIVxCD3 DART-Mediated Killing Activity Using Lymphocytes from HIV-Infected ART-Suppressed Patients

N=8 (left panel), N=5 (right panel)

*indicates p<0.05 by Dunnett's test for multiple comparisons

Combo (1:1 mix of A32xCD3 and 7B2xCD3)

Sung, et al. JCI. 2015
HIVxCD3 DART Mediated Clearance of Resting Patient CD4 Cells Exposed to Vorinostat

HIVxCD3 DART-mediated virus clearance in 4 of 4 patients (longer time needed for Pt 795)

Sung, et al. JCI 2015
Enhancing HIV-specific immunity

- Provides all 3 signals required for adaptive immune response (TCR, CD28, IL 12) in context of patient’s own Gag, Rev, Nef, Vpr
- Produces memory T cells for a durable response
- Does not require CD4+ T cell help
Multi-functional immune responses to the total antigen RNA payload in participants treated with 4 doses of AGS-004

Memory CD28+ CD45RA-CTL recall responses ex vivo to AGS-004 at baseline and week 16 in 6 participants treated during AHI and aviremic for more than 6 months

- BrdU+
- CD107a+
- GrnB+
- IFN γ+
- IL22+
- TNFα+

*p<0.005
Steps to eliminate HIV infection

Productively Infected Cells

Immunotherapy

Latent Infection

Latency Reversal

Finally: the addition of durable immunotherapy for protection if rebound occurs