Designing a MDR-TB Injectable Sparing Regimen in Children: Research Priorities, Design Considerations and Discussion

Tuberculosis Scientific Committee Meeting
Monday, 13 June 2016

H. Simon Schaaf
Professor in Paediatrics
Desmond Tutu TB Centre
South Africa

James Seddon
Clinical Lecturer
Imperial College
London

Anneke C. Hesseling
Professor in Paediatrics
Desmond Tutu TB Centre
South Africa
Outline

• Background
• Who to include
• Composition of control arm
• Composition of intervention arm
• Other questions and challenges
Considerations for study

• **Entry points**
 - how to diagnose TB disease
 - how to diagnose “MDR-TB”
 - disease severity (deciding treatment regimen and treatment duration)

• **End points/Treatment response (Outcomes)**
 - Culture-confirmed or not (bacteriological cure vs. Rx completion)
 - Favourable vs. unfavourable outcomes

• **Safety/tolerability**
 - Adverse effects of drugs - monitoring

• **Microbiology**
 - Which lab bacteriology to use and how/when (e.g. Xpert only initial diagnosis)
Entry points – who should be included (1a)

Certainty of diagnosis and DST-patterns

• **DR-TB disease**: Clinical, radiological, or microbiological pathology, in combination with diagnosis of confirmed, probable, (or possible) DR-TB disease (*Seddon et al JPIIDS 2013*)

• **Not TB infection only**, which should include children with positive bacteriology who have no clinical or radiological disease
Entry points – who should be included (1b)

Certainty of diagnosis and DST-patterns

• For research into paediatric DR-TB, it is important to describe the precise drug susceptibility test (DST) result:
 – **Confirmed** DR-TB: DST pattern of child’s isolate
 – **Presumed (probable)** DR-TB: DST pattern of the likely source case(s)
 – Therefore not only the “category” (MDR/Pre-XDR/XDR) but full available DST result
 – Should possible DR-TB be included? (no DST result of child or source)

• **Only MDR-TB** and more, or also RIF-mono-resistant? What about incomplete results (GXP only)
Entry points – who should be included (2)

Age: 0-17 years

• Important to include adolescents – different types of pulmonary disease, rarely studied
• Important to include infants – immune system developing and different pharmacokinetics

HIV status

• Both HIV-uninfected and HIV-infected children should be included
Entry points – who should be included (3)

Types of TB

• Pulmonary TB – yes
• Extrapulmonary TB – yes, but not TB meningitis / miliary TB (?) unless certainty about regimen’s drugs penetrating CSF?

Disease severity

• Very important consideration: severe and non-severe TB disease – could definitely influence treatment duration and treatment outcome
• Classification by Wiseman et al. (PIDJ 2013) or Shine-trial classification for non-severe disease
Who to include - options

- MDR-TB
 - MDR-TB with susceptibility to flq and inj
 - Probable
 - Confirmed
 - MDR-TB with susceptibility to the flq
 - Probable
 - Confirmed
 - Any MDR-TB irrespective of flq and inj susceptibility
Who to include and how to treat them - options

MDR-TB

- Same regimen
 - All children
 - Children with limited disease
 - Children with severe disease
 - Children with confirmed disease

- Variable regimens
 - Different regimens for severe vs. limited disease
 - Different regimens for confirmed vs. limited disease
Control Arm – options

- Standard traditional 18 month ‘WHO’ regimen where every child receives the same regimen for the same duration
 - 6Am/Mfx or Lfx/Cyc or Tzd/Eth/Z/H 12Mfx/Cyc/Eth/Z/H
- Clinician designed regimen based on WHO principles (4 active drugs plus Z) – variable regimens for
 - Variable types of resistance
 - Variable types of severity
 - Treatment response
- 9-12 month regimen
 - 4-6Am/H/Eth/Clof/Mfx/E/Z +5-6Clof/Mfx/E/Z
Intervention arm principles

- In designing a regimen we need to consider the following when thinking about which drugs to include
 - Different mechanisms of action
 - Different mechanisms of resistance
 - Toxicity (also similar toxicity other drugs, e.g. mitochondrial tox with LNZ, BDQ, ARVs)
 - Distribution (penetration)
 - Interaction (other drugs)
 - Ease of use (children and healthcare programs)
Intervention arm thoughts (no injectable)

- E / Z / H
- Mfx / Lfx
- Eth / Cyc
- Lnz / Cfz
- Dlm

Duration?
Other Questions (to get more out of study)

• Drugs
 – Aspirin
 – Steroids
 – NAC (N-acetyl-cysteine)
 – Ibuprofen
 – Efflux pump inhibitors
 – Vitamin D
• Delivery
 – Inhaled therapy
• Other
 – Nutritional support
 – Psychosocial support
Possible Trial 1

All children with MDR-TB

Intervention
6-9Lfx/Lnz/Clz/Dlm/H/Z/Eth

Control
9-12 month regimen

NAC
Placebo

Opt out for individual children; Lnz or Lfx change to PAS or BDQ if intolerable/resistance?
Possible Trial 2

All children with MDR-TB

Limited Disease
- Intervention: 6 Lfx/Del/Z/Clz
- Control: 9 month regimen (omitting injectable?)

Severe Disease
- Intervention: 9Lfx/Del/Lnz/Clz/Z/H
- Control: 9 month regimen

Role of BDQ if becomes available for children?
Trial implementation and uptake considerations

- Effective
- Safe
- Child friendly and program friendly (once daily dosing)
- Simplicity of regimen
- Monitoring for AE
STREAM: Regimens for Stage 2

Regimen A

Locally used WHO-approved MDR-TB regimen

Regimen B
(Stage 1 study regimen)

- Clofazimine
- Ethambutol
- Moxifloxacin
- Pyrazinamide
- Isoniazid
- Kanamycin
- Prothionamide

16 weeks
40 weeks

Regimen C
(modified Stage 1 study regimen, all oral)

- Bedaquiline
- Clofazimine
- Ethambutol
- Moxifloxacin
- Pyrazinamide
- Levofloxacin
- Isoniazid
- Prothionamide

16 weeks
40 weeks

- Bedaquiline added
- Moxifloxacin replaced by levofloxacin
- Kanamycin dropped

Regimen D
(modified Stage 1 study regimen, shortened)

- Bedaquiline
- Clofazimine
- Pyrazinamide
- Levofloxacin
- Isoniazid
- Kanamycin

8 weeks
28 weeks

- Bedaquiline added
- Moxifloxacin replaced by levofloxacin
- Prothionamide dropped
- Ethambutol dropped
Table 1. Planned or ongoing Phase 2 or 3 trials of MDR-TB treatment or preventive therapy

<table>
<thead>
<tr>
<th>Trial</th>
<th>MDR-TB Treatment trials</th>
<th>Components of intervention arm</th>
<th>Trial</th>
<th>MDR-TB Preventive therapy trials</th>
<th>Components of intervention arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC005</td>
<td>PZA, BDQ, PTA</td>
<td></td>
<td>VQUIN</td>
<td></td>
<td>LFX</td>
</tr>
<tr>
<td>Opti-Q</td>
<td>LFX + standard of care</td>
<td></td>
<td>TB-CHAMP</td>
<td></td>
<td>LFX</td>
</tr>
<tr>
<td>STREAM II</td>
<td>BDQ, CFZ, EMB, PZA, LFX, INH, PTO</td>
<td></td>
<td>PHOENIx</td>
<td></td>
<td>DLM</td>
</tr>
<tr>
<td>NIX-TB</td>
<td>LZD, BDQ, PTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAND</td>
<td>PZA, MFX, PTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEXT-TB</td>
<td>PZA, LFX, ETO/hdINH, LZD, BDQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C208</td>
<td>BDQ + standard of care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial 213</td>
<td>DLM + standard of care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>endTB</td>
<td>Combinations including LZD, BDQ, CFZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PZA-pyrazinamide; BDQ-bedaquiline; PTA-pretomanid; LFX-levofloxacin; EMB-ethambutol; MFX-moxifloxacin; PTO-prothionamide; CFZ-clofazimine; hdINH-high dose isoniazid; LZD-linezolid; ETO-ethionamide; DLM-delamanid

Slide: courtesy Anthony Garcia-Prats
Data gaps/Challenges

• Optimal and safe use of FQNs across age spectrum – PK studies in progress: LFX and MFX (0-8 yrs)
• Optimal and safe use of LNZ (PK data pending) – toxicity concerns – full duration of treatment (replace if AEs)
• Clofazimine PK and safety (planned IMPAACT capsule) Role of BDQ? (P1108 and Janssen study) – as data available to replace other drugs for resistance/toxicity?
• Role of BDQ/DLM co-treatment (planned IMPAACT capsule)
• Changing landscape: MDR-TB treatment guidelines, access programs
• Timing of inclusion wrt adult trials (adolescents)
• Formulations - including clofazimine (gelcaps), FQNs
Questions?