Effects of Broadly Neutralizing Antibody Combinations in HIV-1 Infection

Marina Caskey
The Rockefeller University

June 19, 2018
Broadly neutralizing antibodies with improved breadth and potency being evaluated clinically

In vitro neutralizing activity against multi-clade viral panels, measured by TZM.bl assay

Potential roles of bNAbs in HIV-1 therapy

- **Maintenance**

 Safety: As a class, mAbs are **considered safe**

 Adherence: mAbs **have long half-lives**, that can be prolonged to ~ 2 months

- **Long-term control**

 mAbs might “**boost**” or “improve” existing **immune responses**

 mAbs have potential to **directly eliminate infected cells** and therefore interfere with the HIV latent reservoir
3BNC117 and 10-1074
Target Independent Epitopes

Non-overlapping epitopes

Gristick et al NSMB 2016

Kong et al, J Virol 2015

Coverage of 96% of 125 strains (multi-clade)
Median IC$_{50}$ of 0.04 µg/ml and IC$_{80}$ 0.15 µg/ml.
First-in-Human Studies
3BNC117 and 10-1074

Mean decline in plasma viremia of $\sim 1.5 \log_{10} \text{cp/ml}$.
3BNC117 monotherapy delayed viral rebound by a median of 8 weeks
Selection of resistant viral strains

Caskey, Klein et al., Nature 2015
Scheid et al., Nature 2016
Caskey, Schoofs et al. Nat Med. 2017
bNAb escape variants remain sensitive to antibodies targeting different Env epitopes
3BNC117 plus 10-1074 Combination ATI Study

Graphical Representation

- **3BNC117 + 10-1074** (30 mg/kg)
- **Screen**
- **Assessment of latent reservoir**
- **ART**
- **Plasma SGA**
- **Rebound outgrowth**

Table Representation

<table>
<thead>
<tr>
<th>Time</th>
<th>Screen</th>
<th>3BNC117 + 10-1074</th>
<th>ART</th>
<th>Rebound</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Legend

- **+** indicates presence
- **-** indicates absence

Note: The graph shows the timeline of the study with key markers indicating the phases of the treatment and assessment.
Antibodies differ from standard ART in their potential to directly eliminate HIV-infected cells and enhance host immune responses.

Bournazos et al., JEM 2015
Neutralization of tier 2 virus develop after 3BNC117 infusion in a viremic HIV-infected individual.
3BNC117 enhances host humoral immunity to heterologous tier 2 HIV-1 viruses

- Both a ‘vaccinal effect’ and responses to newly evolving epitopes probably contribute to the enhancement of humoral immune responses.

Schoofs T, Klein F. et al., Science 2016
Early antibody therapy leads to CD8-mediated control of SHIV infection in NHP

Nishimura et al, Nature 2017
Two participants continue to maintain viral suppression after both 3BNC117 and 10-1074 have been cleared

- IUPM – 0.68
- ART initiated 4-5 mo of infection
- On ART x 21 years.
- VL > 800K at start of ART
- HLA-A*1 and A*29
 B*38 and B*44

- IUPM – 1.8 > 1.4
- ART initiated ~ 7 mo after Dx
- On ART x 4 years.
- VL > 80K at start of ART
- HLA-A*3 and A*25
 B*18 and B*44

➢ No detectable levels of ART in blood
Summary

• bNAbs **engage the host immune system** (through ADCC and increased antigen presentation), and **enhance host humoral responses**.
 • 3BNC117 mediates direct cell killing in hu-mice (Lu et al, Science 2016)
 • Kinetics of viral suppression after 3BNC117 in viremic individuals suggested acceleration of infected cell clearance, in addition to clearance of free viruses (Lu et al, Science 2016).
 • 3BNC117 enhanced humoral immune responses in HIV-infected individuals (Schoofs et al, Science 2016).

• During early SHIV-AD8 infection, 3BNC117+10-1074 mediated long-term virologic control in a subset of animals. Long-term control was dependent on CD8+ T cells (Nishimura et al, Nature 2017).

• Two participants in the 3BNC117/10-1074 combination ATI study continue to maintain suppression after both antibodies have cleared. One of them has experienced several low level viral blips, followed by re-suppression. Evaluation of immune responses is ongoing.

• Studies combining bNAbs with LRAs (HDAC inhibitor, TLR agonists) or therapeutic vaccines are planned.
bNAb Immunotherapy - Challenges

• Pre-existing resistance in HIV-infected individuals
 • Are *in vitro* neutralization data from large pseudoviruses panels predictive?
 ➢ Cohen, Lorenzi et al, J Virol 2018
 • How to determine antibody sensitivity in HIV-infected individuals?
 ➢ Monogram’s Pheno-Sense assay
 • What is the cut-off IC$_{50}$ that defines “sensitivity” *in vivo*?
 • What is the optimal IC$_{50}$ / bNAb level ratio?

• Viral escape during monotherapy.
 • Will 2 bNAbs be sufficient long-term?

• Penetration in tissues to interfere with latent reservoirs

• Immunogenicity
Modified Antibodies – Future Studies

- **Increase potency**: structure-based design (Fab region)
 - VRC07-523-LS

- **Increase breadth**: bi-specific and tri-specific antibodies
 - iMab/10e8v2.0
 - SAR441236 (VRC01/10E8v4-PGDM1400-LS)

- **Increase bioavailability**: LS mutations and alternative delivery systems (AAV-vectors)
 - VRC01-LS, VRC07-523LS, 3BNC117-LS
 - rAAV1-PG9DP

- **Increase Fc effector functions**: Fc-mutations and multifunctional molecules
 - BiTE, DART, VRC07-aCD3
 - GASDALIE

- Reduce potential for anti-drug antibody responses
Acknowledgements

Study participants

Lab. Molecular Immunology
Michel Nussenzweig
Pilar Mendonza
Yehuda Cohen
Julio Lorenzi
Yotam Bar On
Lilian Cohn
Ching-Lan Lu
Lilian Nogueira
Till Schoofs
Johannes Scheid
Josh Horwitz

University of Cologne
Florian Klein
Henning Gruell
Gerd Faetkenheuer
Gisela Kremer

UPenn
Beatrice Hahn
Ted Kreider
Gerald Learn

Rockefeller University
Hospital
Emil Gotschlich
Sarah Schlesinger
Rhonda Kost
Barry Coller
IRB Staff
Inpatient and
Outpatient
Nursing Staff

Celldex Therapeutics
Tibor Keller
Tom Davis
Audrey Louie / Tim Belt
Larry Thomas
Thomas Hawthorne
Donna Jordan
Richard Khazzaka

BIDMC Harvard
Michael Seaman
Christy Lavine
Alexander Robles

Duke University
Georgia Tomaras
Kelly Seaton
Nicole Yates

Weill Cornell Medicine
Trip Gulick
Leah Burke

IAVI
Pat Fast
Harriet Park
Joette Pindar
Andrew Elnaltan
Devika Zachariah
Jim Ackland

AECOM and
Montefiore
Medical Center
Barry Zingman
Kathy Anastos
Harris Goldstein

Supported by: BMGF, NIH/NIAID, RU CCTS (NCATS), Robertson Foundation, The Rockefeller University
Broadly neutralizing antibodies are generated during HIV infection

Transmission | Acute infection | Chronic infection

Continuous interplay of autologous virus escape and antibody maturation
Increase in heterologous (cross) neutralization activity - breadth

10-20% of HIV+ individuals eventually develop broadly neutralizing serum antibodies
LS-antibodies significantly delay virus acquisition in NHP during repeated low-dose rectal challenges.
Identification of broadly neutralizing antibodies

“Elite neutralizer” ~ 1%
Single cell sort of Env binding B cells
PCR amplify antibody heavy and light chain
Clone, produce antibodies

Do bNAbs interfere with the latent reservoir?

• 3BNC117 plus romidepsin or romidepsin alone during ART suppression

• 3BNC117 plus 10-1074 in the presence or absence of ART suppression