Update on the Mycobacteriology Laboratory Sourcebook for Harmonization and Support of TB Clinical Trials

IMPAACT Annual Meeting 2018

Anne-Marie Demers, Desmond Tutu TB Centre, Stellenbosch University, South Africa
Plan

1) Overview of Sourcebook
2) Version 1
3) How it will be used for Phoenix
4) Updates
Variations in TB lab procedures

• TB drug trials are performed at multiple sites in different geographical settings

• TB laboratories worldwide use a variety of methods for diagnosing TB

• Many procedures are not automated and can be affected by the individuals performing them (e.g., smear reading, sputum processing)

• These variations can affect microbiology endpoints, comparability of results and quality of results for participant safety
Sputum specimen → NALC/NaOH → Sputum processing → Add buffer to 50 ml → Centrifuge rotor → Centrifuge 15 minutes → Supernate and sediment → Pour off → Pellet → Reconstitute with saline or buffer → Broth tube → Ready to inoculate → Slide for smear → NAAT → Solid media
• **Mycobacterial Growth Indicator Tube**
• Automated liquid culture system but manual steps for identification once growth detected by instrument: these steps may vary from one lab to another
Harmonization of TB testing

• To minimize variations and achieve high quality, comparable testing results across TB laboratories participating in the clinical trial

• Since TB labs already use validated standard operating procedures (SOPs) and participate in trials sponsored by different networks, efforts were directed towards harmonizing Key Elements

• Lab procedures should be reviewed for the presence or absence of these necessary Key Elements, and incorporated as necessary
Harmonization Based on Key Elements

• Key Elements in TB lab procedures are those that
 • Have the greatest impact on microbiology endpoints of clinical trials
 • Allow for comparison of results among all trial sites (or from one study to another) and
 • Provide accurate test results to ensure safety of trial participants

• Dr Kathy Eisenach

• First version of the Key Elements was implemented in the DMID 13-0057/TBTC Study 32 and second version in TBTC Study 31/ACTG 5349

• ACTG TB Core Lab Team
Checklists and Guides

• Checklists developed for each test procedure
 • Key Elements
 • Important technical points
 • Do not directly affect the microbiology endpoints, comparability of results among labs or participant safety, but are important in overall performance of the test and strongly recommended

• Background information added

• Combined into guides that were piloted in a small group of network laboratories

• All guides, accompanying checklists and Key Elements have been revised and combined in the Sourcebook
Sourcebook Sections

• Introduction
• Biosafety
• Quality Assurance with examples of Quality Indicators
• Specimen Collection, Transport and Laboratory Receipt
• Main Procedures
 • Specimen Processing
 • Smear Microscopy
 • MGIT Culture
 • Solid Media Culture
 • MPT64 Antigen Identification
 • MGIT Drug Susceptibility Testing (DST)
 • Solid Media DST
 • Hain Line Probe Assays
 • Cepheid Xpert MTB/RIF
 • Storage
• Checklists and Appendix (Study Protocol Review Form)
Section content

• Background
 • Historical use of the method/assay, how test results are used, why certain test methods are required, preferred or optional, all in the context of TB clinical trials

• List of related Key Elements
 • How they impact the quality, reproducibility, and comparability of results, and participant safety

• Reporting terminology for study data

• Quality controls (QC)

• Checklists: Key Elements and critical technical points
 • All grouped at the end of the Sourcebook
7 Specimen Processing

7.1 Background Information

7.1.1 Introduction

This section focuses on processing respiratory specimens for Acid Fast Bacilli (AFB) smear, MTB culture, and drug susceptibility tests (DST, phenotypic or genotypic). Respiratory specimens included here are the most commonly used in TB drug trials, i.e. expectorated sputum, induced sputum and more specifically in children, gastric aspirates. The NALC (N-acetyl L-cysteine)-NaOH (sodium hydroxide) method is widely used and validated with the BACTEC™ Mycobacteria Growth Indicator Tube (MGIT) TB System. Since MGIT culture is used in all TB drug trials the NALC-NaOH method is the standard.
<table>
<thead>
<tr>
<th>Key Element</th>
<th>Affect</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use all respiratory specimen up to 10 mL in processing</td>
<td>Isolation of MTB</td>
<td>Microbiology endpoints</td>
</tr>
<tr>
<td>Decontaminate respiratory specimen with a final sodium hydroxide (NaOH)</td>
<td>Isolation of MTB</td>
<td>Microbiology endpoints</td>
</tr>
<tr>
<td>concentration of 1.0 – 1.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decontaminate respiratory specimen for 15 to 20 minutes prior to adding</td>
<td>Isolation of MTB</td>
<td>Microbiology endpoints</td>
</tr>
<tr>
<td>phosphate buffered saline (PBS) (pH 6.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrifuge specimen with a relative centrifugal force (RCF) of 3000xg,</td>
<td>Isolation of MTB</td>
<td>Microbiology endpoints</td>
</tr>
<tr>
<td>for at least 15 minutes. A refrigerated centrifuge is preferred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-suspend the digested, decontaminated specimen to final volume of 1.5</td>
<td>Standardization of suspension used for inoculating culture</td>
<td>Comparability of results</td>
</tr>
<tr>
<td>– 2.0 mL with PBS (pH 6.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up cultures immediately following the suspension of decontaminated,</td>
<td>Isolation of MTB</td>
<td>Microbiology endpoints</td>
</tr>
<tr>
<td>concentrated specimen</td>
<td>Speed of confirming TB diagnosis and DST results</td>
<td>Participant enrollment and safety</td>
</tr>
<tr>
<td>Include positive control and negative controls at least once each day that</td>
<td>Detect cross-contamination and contaminated reagents</td>
<td>Microbiology endpoints</td>
</tr>
<tr>
<td>specimen processing is performed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-2. Specimen Processing Internal Quality Controls

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Positive control** | The positive processing control measures the extent NaOH killing of MTB. When subjected to smear and culture, these results are monitored to ensure the extent of killing does not deviate from the norm. An ideal positive control yields a MGIT TTD of 6-10 days, which is equivalent to a 3+ AFB smear, 10^6 CFU/mL, or 1:500 dilution of 0.5 McFarland standard.
Positive control options:
• Suspension of MTB H37Rv or MTB H37Ra
• AFB positive sputum specimen from a known TB case, homogenized or digested
• Sputum specimen to which MTB H37Rv or MTB H37Ra has been added
• Artificial sputum sample to which MTB H37Rv or MTB H37Ra has been added |
| **Negative control** | The two main purposes of the negative processing control are to:
1) detect cross-contamination events and
2) check the sterility of the processing reagents. |
17.3 Specimen Processing Checklist

A. Laboratory Information

<table>
<thead>
<tr>
<th>Laboratory Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Address:</td>
<td></td>
</tr>
<tr>
<td>Completed By:</td>
<td></td>
</tr>
<tr>
<td>Date Completed:</td>
<td></td>
</tr>
</tbody>
</table>

B. Relevant Standard Operating Procedures (SOPs)

<table>
<thead>
<tr>
<th>SOP No.</th>
<th>SOP Title</th>
<th>Version No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Do your laboratory SOP(s) include instructions for the following? Indicate, “Yes (Y)”, “No (N)” or “Not Applicable (NA)” for each response below. Justify or explain all “N” or “NA” responses in the “Comments” column.

<table>
<thead>
<tr>
<th>Key Elements</th>
<th>Y</th>
<th>N</th>
<th>NA</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use the entire respiratory specimen in processing. If more than 10 mL, a procedure is used to reduce the starting volume.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Decontaminate specimens with a final sodium hydroxide (NaOH) concentration of 1.0 – 1.5%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Decontaminate specimens in NaOH-NALC for 15-20 minutes at room temperature prior to adding phosphate buffered saline (PBS, pH 6.8).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Centrifuge the decontaminated specimen at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Finally, version 1!

- Version 1.0 March 2018
- Available on Hanc and pSMILE websites
- Sourcebook document
- Word version of check-lists
- Examples of Quality Indicators Report Form
Letter to network

Date: April 24, 2018
TO: ACTG and IMPAACT Laboratories
FROM: Dr. Grace Aldrovandi, ACTG & IMPAACT Network Laboratory Principal Investigator
ACTG Laboratory Science Group
IMPAACT Laboratory Center
Cc: ACTG Laboratory Science Group
IMPAACT Laboratory Center
Dr. Kathleen Eisenach
Dr. Anne-Marie Demers
Fatima Jones
Re: IMPAACT/ACTG Memo: Mycobacteriology Laboratory Sourcebook for Harmonization and Support of Tuberculosis (TB) Clinical Trials

Please forward this information to the relevant clinic and laboratory personnel at your site
Also:

- NIAID Funding News
- WHO Workshop on TB clinical trials design
- Working Group on New TB Drugs News
- CPTR website
3) Using the Sourcebook for A5300B/I2003B/PHOENIx

- TB laboratory SOE table
- Protocol specific TB testing to address study objectives and endpoints: details of TB tests and procedures to be performed at time points throughout the study

![Table](image-url)
3) Using the Sourcebook for A5300B/I2003B/PHOENIx (2)

- TB laboratory SOE table in appendix of LPC
- References are made to the Sourcebook for information however all study specific testing is detailed in the Table
- Checklists of relevant technical procedures have been combined into one study specific document
- Participating TB laboratories are expected to have all elements of the checklists in place for the start of the study. Lab procedures should be reviewed for the presence or absence of these necessary Key Elements, and incorporated as necessary.
3) Using the Sourcebook for A5300B/I2003B/PHOENIx (2)

• If some items cannot be addressed in time for the start of the study, “N” will be indicated for the item with comments in the corresponding comment box.

• The completed checklists will be uploaded in the MiLAB system (along with completion of the MiPAL).

• The ACTG and IMPAACT Lab Centers, and the PHOENIx protocol team will follow-up if necessary based on responses received.
4) Updates

- WHO critical concentrations for TB drug susceptibility testing recently updated
- Addressed in the TB laboratory SOE table for Phoenix
- Useful information will be added to the Sourcebook in upcoming update
Critical concentrations (CCs)

• No changes in CCs for second-line injectable agents (kanamycin, amikacin, capreomycin, streptomycin) for MGIT

• For fluoroquinolones, CCs have been changed for levofloxacin, moxifloxacin and gatifloxacin. A clinical breakpoint for the higher dose of moxifloxacin (800 mg/day) was established for the 1st time.

• Testing of ofloxacin is not recommended as it is no longer used to treat drug resistant-TB and laboratories should transition to testing the specific fluoroquinolones used in treatment regimens.

• During this transition, testing of ofloxacin at the CCs of 2.0 mg/L in MGIT may be performed instead of testing at the CCs for levofloxacin or moxifloxacin, but not for the clinical breakpoint for moxifloxacin.
Antimicrobial specs of first-wave NLAs (New Lyophilized Antimicrobials)

<table>
<thead>
<tr>
<th>NLA</th>
<th>Catalog No.</th>
<th>Quantity per vial (\mu g)</th>
<th>Vial Reconstitution Volume ml*</th>
<th>Final reconstituted concentration (\mu g / ml)</th>
<th>WHO critical concentration (\mu g / ml)</th>
<th>Usage volume ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>215350</td>
<td>332</td>
<td>4</td>
<td>83</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>215348</td>
<td>830</td>
<td>4</td>
<td>207.5</td>
<td>2.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Capreomycin</td>
<td>215351</td>
<td>830</td>
<td>4</td>
<td>207.5</td>
<td>2.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>215355</td>
<td>1660</td>
<td>4</td>
<td>415</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>215352</td>
<td>664</td>
<td>4</td>
<td>166</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>215349</td>
<td>498</td>
<td>6</td>
<td>166</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>41.5</td>
<td>0.25</td>
<td>0.1</td>
</tr>
<tr>
<td>Growth supplement</td>
<td>245116</td>
<td>Same as OADC Enrichment or SIRE Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reconstitute with sterile, distilled water

Previously:

<table>
<thead>
<tr>
<th>Moxifloxacin</th>
<th>Catalog No.</th>
<th>Quantity per vial (\mu g)</th>
<th>Vial Reconstitution Volume ml*</th>
<th>Final reconstituted concentration (\mu g / ml)</th>
<th>WHO critical concentration (\mu g / ml)</th>
<th>Usage volume ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moxifloxacin</td>
<td>215349</td>
<td>498</td>
<td>3</td>
<td>166</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>41.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

The current BD moxifloxacin-0.5/2.0 laboratory use reagent vial will be discontinued.
Conclusion

• Mycobacteriology Laboratory Sourcebook for Harmonization and Support of TB Clinical Trials version 1
• Developed to ensure high quality results and comparability of data across laboratories participating in TB clinical trials
• Laboratories involved in Study 31/A5349 are already familiar with the concept of Key Elements
• Key Elements and Checklists will be used for A5300B/I2003B/PHOENIx
• Checklists can also be used during lab audits or visits
• Eventually also used by other networks and groups
Acknowledgements

• TB Lab Core Team: Kathy Eisenach, Fatima Jones and Frances Whalen
• Bob Coombs, Grace Aldrovandi and Daniella Livnat