Role of Mycobacteriology Laboratory in TB Clinical Trials

Anne Purfield, PhD
Director of Laboratory Operations
Tuberculosis Trials Consortium
US Centers for Disease Control and Prevention
Pre-antibiotic era TB therapies largely consisted of excluding TB patients in sanatoria.

Development of BCG vaccine in the 1920s
- Much more effective in children
- Variable efficacy in adults

Antibiotic development in 1940s dramatically shifted the outlook for TB patients.
History of TB Drug Therapies

- Single drug therapy or monotherapy often results in resistance to TB drugs

 - Treatment of TB in the 1940s with streptomycin or p–aminosalicylic acid monotherapy resulted in resistant TB in ~70% of patients

 - Streptomycin and p–aminosalicylic acid combined therapy reduced TB resistance to ~9%

Introduction of combination therapy including streptomycin, p–aminosalicylic acid, and isoniazid (1952)
- Effective reduction in resistance emergence
- 18 month treatment regimen

During the 1950s and 1960s, pyrazinamide, ethambutol, and rifampicin were introduced
- Combined treatment with isoniazid shortened treatment time and helped form the standard TB regimen we have today

Current TB Drug Regimen

- **Initial Phase: 2 months**
 - Rifampicin (RIF)
 - Isoniazid (INH)
 - Pyrazinamide (PZA)
 - Ethambutol (EMB)

- **Continuation Phase: 4 months**
 - Rifampicin (RIF)
 - Isoniazid (INH)

- Two treatment phases target different populations of mycobacteria
Heterogeneous Mycobacteria Populations

- Population A
 - Rapidly multiplying (often in pulmonary cavities)

- Population B
 - Slowly multiplying (due to local adverse conditions)

- Population C
 - Sporadically multiplying (in lung granulomas)

Bactericidal and Sterilizing Effects of TB Drugs

- TB drugs have different effects on mycobacteria
 - Bactericidal
 - Kill active, relatively-fast growing mycobacteria
 - Reduces infectiousness of the patient
 - Sterilization
 - Eliminates dormant but viable bacilli
 - Effective sterilization prevents relapse
Drugs that kill population A are considered bactericidal.

TB drugs bactericidal activity:
- INH ≫ RIF ≫ EMB

Bactericidal and Sterilization Effects of TB Drugs

Drugs that kill populations B and C are considered sterilizing.

- TB drugs sterilization activity population B
 - PZA >> RIF > INH

- TB drugs sterilization activity population C
 - RIF >> INH

Reduction in mycobacteria populations are key predictors of treatment success

- Rate of reduction in bacillary load
- Time to culture conversion
- Proportion culture-negative at 8 weeks
Develop effective clinical strategies to eliminate TB

- Cure TB infections as quickly as possible without relapse
 - Shorten length of TB treatment
 - Prevent community transmission
- Improve patient compliance/adherence
- Reduce emergence of drug-resistant TB
TBTC Study 31

- Substitution of Rifapentine for Rifampicin
- Substitution of Moxifloxacin for Ethambutol
- Shortening of TB Treatment Regimen
Evaluate efficacy of a high dose rifapentine-containing regimen to determine whether the single substitution of RPT for RIF makes it possible to reduce the duration of treatment to 4 months (17 weeks)
 ◦ 2PHZE/2PH

Evaluate efficacy of a 4 month (17 weeks) regimen that substitutes a) high dose RPT for RIF and b) MOX for EMB to determine whether reduction to 4 months (17 weeks) treatment duration is possible
 ◦ 2PHZM/2PHM
S31 Schema

Screen for eligibility

Consent, enroll

Randomize 1:1:1

Regimen 1 (control) 2RHZE/4RH (26 wks)

Regimen 2 (investigational) 2PHZE/2PH (17 wks)

Regimen 3 (investigational) 2PHMZ/2PHM (17 wks)

Evaluation for primary outcome at 12 months after randomization
TB Clinical Trials are complex

- Treatment of multiple drugs lasts several months
- Site staff must watch participant taking most of the pills over several months (DOTS)
- Infection and cure does not protect from reinfection—must determine if relapse is due to reinfection or treatment failure
- Participants must return to the clinic for months or years for follow up
- Success is based on laboratory and clinical data
Importance of Mycobacteriology Labs in TB Trials

- Laboratory data is used for *more than just diagnosis*
- Laboratory data is used to *assess study outcomes*
Lab Time and Events Schedule

<table>
<thead>
<tr>
<th>Myco Lab test and source</th>
<th>Screen</th>
<th>Base</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>17</th>
<th>22</th>
<th>26</th>
<th>Month</th>
<th>Early term. visit</th>
<th>Unscheduled visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum specimen</td>
<td></td>
</tr>
<tr>
<td>Xpert MTB/RIF</td>
<td></td>
</tr>
<tr>
<td>Molecular DST</td>
<td></td>
</tr>
<tr>
<td>Smear microscopy</td>
<td></td>
</tr>
<tr>
<td>Culture– solid media</td>
<td></td>
</tr>
<tr>
<td>Culture-- MGIT</td>
<td></td>
</tr>
<tr>
<td>Isolate from culture</td>
<td></td>
</tr>
<tr>
<td>MTB confirmation</td>
<td></td>
</tr>
<tr>
<td>Local storage of isolate</td>
<td></td>
</tr>
<tr>
<td>Drug susceptibility testing</td>
<td></td>
</tr>
<tr>
<td>Ship isolate to CDC</td>
<td></td>
</tr>
</tbody>
</table>
How do laboratory data affect trial endpoints?
Mycobacteriology Laboratory Impacts on Trial Endpoints

<table>
<thead>
<tr>
<th>Primary Endpoint</th>
<th>Critical Mycobacteriology Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB disease-free survival 12 months after study treatment assignment</td>
<td>Liquid and/or solid culture, sequencing of baseline and follow-up isolates</td>
</tr>
</tbody>
</table>

Secondary Endpoints

<table>
<thead>
<tr>
<th>Secondary Endpoint</th>
<th>Critical Mycobacteriology Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB disease-free survival 18 months after study treatment assignment</td>
<td>Liquid and/or solid culture, sequencing of baseline and follow-up isolates</td>
</tr>
<tr>
<td>Time to stable sputum culture conversion</td>
<td>Liquid and solid culture</td>
</tr>
<tr>
<td>Speed of decline of sputum viable bacilli by automated liquid MGIT culture days to detection</td>
<td>Liquid culture</td>
</tr>
<tr>
<td>Proportion of participants who are culture negative at completion of 8 weeks of treatment</td>
<td>Liquid and solid culture at baseline and 8 week follow-up</td>
</tr>
</tbody>
</table>
Endpoint: Disease-free survival at 12/18 months

- Microbiologic evidence of TB disease
 - Positive culture from sputa
- Clinical evidence of TB disease
 - Symptoms, x-ray
Endpoint: Time to culture conversion

- Culture conversion = 2 consecutive negative sputum specimens, taken ≥28 days apart

- Time to culture conversion = # days of treatment until the first of 2 consecutive negative specimens

- Lab reporting for each specimen:
 - Date inoculated
 - Date Mtb growth observed (yes/no/contaminated)

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 8</th>
<th>Week 12</th>
<th>Week 17</th>
<th>Week 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. 1</td>
<td>7</td>
<td>10</td>
<td>84 days</td>
<td>16</td>
<td>21</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Pt. 2</td>
<td>12</td>
<td>16</td>
<td>56 days</td>
<td>18</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Pt. 3</td>
<td>5</td>
<td>7</td>
<td>119 days</td>
<td>18</td>
<td>Negative</td>
<td>18</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Endpoint: Rate of change for time to detection

- Time to Detection (TTD) = number of days between inoculation and detection of growth on MGIT
- With treatment, bacillary load is reduced and TTD increases
- Lab reporting for each specimen:
 - Date of positive culture

![Graph showing Time to Positivity with Study Treatment](image)
Endpoint: Proportion who are culture negative at 8 weeks

- For all participants in each arm, the proportion that have a negative culture from sputa collected at the 8-week visit
- Solid and liquid media analyzed separately
- Lab reporting for each specimen:
 - Culture outcome for specimen collected at 8 wk visit
A tale of identical specimens at BASELINE

<table>
<thead>
<tr>
<th></th>
<th>Lab A</th>
<th>Lab B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Time</td>
<td>1 hour</td>
<td>3 days</td>
</tr>
<tr>
<td>Transport Temp</td>
<td>4°C</td>
<td>21°C</td>
</tr>
<tr>
<td>Decontamination</td>
<td>1.5% NaOH</td>
<td>2% NaOH</td>
</tr>
<tr>
<td>Centrifuge</td>
<td>3000 x g at 4°C for 20 min.</td>
<td>3000 x g, ambient temp. for 15 min. with cold PBS</td>
</tr>
<tr>
<td>Resuspension vol.</td>
<td>1.5 mL</td>
<td>2.5 mL</td>
</tr>
<tr>
<td>MGIT inoculum</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>Baseline TTD</td>
<td>7 days</td>
<td>12 days</td>
</tr>
</tbody>
</table>
Controlling what we can control

- Every Myco Lab perfected their system for local diagnostic mycobacteriology
 - Lab A = 7 days → report “positive culture” to physician
 - Lab B = 12 days → report “positive culture” to physician

- For diagnostic purposes, Labs A and B do the same thing ➔ patient has TB, needs treatment

- For a *clinical trial*, comparing results from Labs A and B could affect the trial outcome

- Aim to control factors that introduce variability between labs and study participants
A tale of identical specimens after 8 weeks of study treatment

<table>
<thead>
<tr>
<th></th>
<th>Lab A</th>
<th>Lab B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Time</td>
<td>1 hour</td>
<td>3 days</td>
</tr>
<tr>
<td>Transport Temp</td>
<td>4°C</td>
<td>21°C</td>
</tr>
<tr>
<td>Decontamination</td>
<td>1.5% NaOH</td>
<td>2% NaOH</td>
</tr>
<tr>
<td>Centrifuge</td>
<td>3000 x g at 4°C for 20 min.</td>
<td>3000 x g, ambient temp. for 15 min. with cold PBS</td>
</tr>
<tr>
<td>Resuspension vol.</td>
<td>1.5 mL</td>
<td>2.5 mL</td>
</tr>
<tr>
<td>MGIT inoculum</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>Baseline TTD</td>
<td>7 days</td>
<td>12 days</td>
</tr>
<tr>
<td>8 week TTD</td>
<td>21 days</td>
<td>Negative Culture</td>
</tr>
</tbody>
</table>
What happened to skew TTD?

- Longer transport time and higher temperatures allow for contaminants to grow.
- Contaminants will:
 - Grow faster and compete for nutrients in culture.
 - Lead to false positive MGIT results.

Lab A
1 day at 4°C

Lab B
3 days at 21°C
Transit time at RT affects culture results

Longer transport time = ↓ rate of positivity and contamination

Reference: Ken Jost, Texas State Department of Health
NaOH during processing kills contaminants and mycobacteria

- Too low and contaminants flourish
- Too high and too many mycobacteria are killed

Lab A 1.5% NaOH

Lab B 2.0% NaOH
After weeks of treatment, sputum volume or number of mycobacteria may be very low.

Key time points for measuring drug efficacy:

- **1.0-1.5% NaOH**
- **≥2.0% NaOH**

NaOH (pH) effect with low bacillary load

- **Positive** MGIT
- **Negative** MGIT
- **False Positive** MGIT
NaOH (pH) affects culture results

- Final pH of the specimen concentrate greatly affects the recovery and TTD
 - High pH will lower the positivity rate and increase the TTD of positive culture
 - High pH may also cause false fluorescence (false positive)

- MGIT was validated and cleared by FDA for use with 1.0 to 1.5% NaOH
Resuspension volume can dilute the mycobacteria
- If number of mycobacteria are high, not an issue
- If number is low, no mycobacteria may be inoculated on media

Lab A
1.5 mL

Lab B
2.5 mL
How endpoints are affected by variation in Myco Lab methods

Culture Conversion

<table>
<thead>
<tr>
<th>Lab A</th>
<th>Base</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 8</th>
<th>Week 12</th>
<th>Week 17</th>
<th>Week 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. 1</td>
<td>7</td>
<td>10</td>
<td>84 days</td>
<td>16</td>
<td>21</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Pt. 2</td>
<td>12</td>
<td>56 days</td>
<td>18</td>
<td></td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Pt. 3</td>
<td>5</td>
<td>7</td>
<td>119 days</td>
<td></td>
<td>Negative</td>
<td>18</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Mean=87 days

<table>
<thead>
<tr>
<th>Lab B</th>
<th>Base</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 8</th>
<th>Week 12</th>
<th>Week 17</th>
<th>Week 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. 1</td>
<td>12</td>
<td>56 days</td>
<td>16</td>
<td></td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Pt. 2</td>
<td>14</td>
<td>19</td>
<td>96 days</td>
<td></td>
<td>Negative</td>
<td>21</td>
<td>Negative</td>
</tr>
<tr>
<td>Pt. 3</td>
<td>8</td>
<td>28 days</td>
<td>15</td>
<td></td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Mean=60 days
How endpoints are affected by variation in Myco Lab methods

Proportion with Negative Culture Results at 8 Weeks

Lab A

30% Negative

Lab B

70% Negative
How do identical specimen analogy affect endpoints?

- Time to Culture Conversion
 - Lab A = 12 weeks
 - Lab B = 8 weeks

- Proportion negative at 8 weeks
 - Lab A = 0/1
 - Lab B = 1/1

- Bias towards drug efficacy at Lab B

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 2</th>
<th>Week 4</th>
<th>Week 6</th>
<th>Week 8</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab A</td>
<td>7</td>
<td>10</td>
<td>16</td>
<td>20</td>
<td>21</td>
<td>Negative</td>
</tr>
<tr>
<td>Lab B</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>25</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Centrifugation is used to sediment mycobacteria
- Speed too low and mycobacteria are still floating and will be discarded
- Too high and mycobacteria can be damaged or killed

Centrifugation temperature keeps mycobacteria happy
- Too high and mycobacteria will be damaged or killed

<table>
<thead>
<tr>
<th>Lab A</th>
<th>3000xg @ 4°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab B</td>
<td>3000xg @ 21°C</td>
</tr>
</tbody>
</table>
A tale of identical specimens after 8 weeks of study treatment

<table>
<thead>
<tr>
<th></th>
<th>Lab A</th>
<th>Lab B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Time</td>
<td>1 hour</td>
<td>3 days-1 hour</td>
</tr>
<tr>
<td>Transport Temp</td>
<td>4°C</td>
<td>21°C 4°C</td>
</tr>
<tr>
<td>Decontamination</td>
<td>1.5% NaOH</td>
<td>2%-1.5% NaOH</td>
</tr>
<tr>
<td>Centrifuge</td>
<td>3000 x g at 4°C for 20 min.</td>
<td>3000 x g, ambient temp. for 15 min. with cold PBS at 4°C for 20 min.</td>
</tr>
<tr>
<td>Resuspension vol.</td>
<td>1.5 mL</td>
<td>2.5 mL-1.5 mL</td>
</tr>
<tr>
<td>MGIT inoculum</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>Baseline TTD</td>
<td>7 days</td>
<td>~7 days</td>
</tr>
<tr>
<td>8 week TTD</td>
<td>21 days</td>
<td>~21 days</td>
</tr>
</tbody>
</table>
Labs have different resources and constraints, and (realistically) every step will not be the same.

GCLP helps to ensure that labs participating in a trial have minimized the variability among sites.

Key Elements in SOPs at all sites:
- All labs across the network use the same Key Elements in their SOPs
- Minimizes variability
Key Elements of Mycobacteriology Laboratory Procedures

- Key Elements were designed to:
 - Reduce variability across mycobacteriology labs
 - Provide high quality data to assess study outcomes

- Adherence to Key Elements provides confidence in laboratory data and resulting study outcome assessment
Key Elements

Sputum Collection and Transport

- The participant is advised to rinse his/her mouth with water (boiled/bottled/sterile) prior to sputum collection.

- At least 3 – 5 mL of sputum is collected; however, if larger volumes cannot be obtained, a minimum of 1 mL is acceptable.

- Sputum induction is performed when the spontaneously expectorated sputum volume collected is less than 1 mL.

- The sputum specimen is stored in a refrigerator or cool box if not transferred to laboratory within 1 hour of collection.

- Transport the sputum specimen to the laboratory in a cool box with ice packs as soon as possible and within 24 hours after collection.

- If refrigeration is not accessible, specimens collected by participants at home must be kept as cool as possible and delivered to the laboratory within 2–3 hours of collection.
Key Elements

Sputum Receipt and Processing

- The specimen must be refrigerated at 2–8°C unless it is processed within 1 hour of receipt by the laboratory.

- Sputum specimens must be decontaminated with a final sodium hydroxide (NaOH) concentration of 1–1.5%.

- Sputum specimens must be processed in a centrifuge capable of generating a relative centrifugal force (RCF) of 3000–3500g (centrifuge must be calibrated annually per manufacturer's instructions).

- Use of a refrigerated centrifuge is preferred.

- During specimen processing, the sputum is decontaminated in NaOH for 15–20 minutes before adding buffer. Do not exceed 20 minutes.

- The digested and decontaminated sputum must be washed and re-suspended in 1.5 mL Phosphate Buffered Saline (PBS) pH 6.8.

- Positive and negative controls must be included in each processing batch.
Key Elements

<table>
<thead>
<tr>
<th>LJ Solid Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Inoculate each LJ slope/plate with (200 \mu\L) of the decontaminated sputum sediment.</td>
</tr>
<tr>
<td>- Solid media must be incubated for at least 8 weeks before being reported as negative.</td>
</tr>
<tr>
<td>- Appropriate controls (e.g., containing low amounts of MTB) must be tested before each batch of media is used, regardless if purchased commercially or prepared in-house.</td>
</tr>
<tr>
<td>- All positive solid media must be examined by ZN staining and subcultured on blood agar to confirm purity.</td>
</tr>
<tr>
<td>- Semi-quantitative colony counts must be reported according to the WHO/IUATLD reporting scheme for solid cultures.</td>
</tr>
<tr>
<td>- Growth of MTB complex must be confirmed using an appropriate identification test method (e.g., PNB or MPT64 TB Antigen Test).</td>
</tr>
</tbody>
</table>
Key Elements

MGIT Culture

- All MGIT cultures (positive and negative) are worked up according to the FIND MGIT Manual.
- MGIT cultures must be inoculated with 0.5 mL of the decontaminated sputum sediment.
- All positive MGIT cultures must be examined by ZN staining and subcultured on blood agar (BAP) to confirm purity.
- The machine generated time-to-positivity (TTP) must be recorded for all positive MGIT cultures.
- Growth of MTB complex must be confirmed using an appropriate identification test method (e.g., PNB or MPT 64 TB Antigen Test).
Role of Your Myco Lab in TB Trials

- Fast and accurate screening of participants
- Quality Mycobacteriology Testing using Key Elements
- Accurately reporting Mycobacteriology test results
- Shipping isolates
- Retaining accurate and auditable source documents
Laboratories Control the Success of TB Clinical Trials

- Questions?