ENTRY KINETICS OF GLOBALLY REPRESENTATIVE AND VERTICALLY TRANSMITTED HIV

Nicholas E. Webb, Nicole Tobin, Grace M. Aldrovandi
Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles.

INTRODUCTION
- HIV entry is an organized process that depends on transient states
- Transiently exposed regions in the fusion protein gp41 are highly conserved, attractive vaccine targets
- MPER is targeted by bNAbs with wide breadth (e.g., 2F5, 4E10, 10E8)
- HR1 is targeted by T20 (Fuzeon)

Understanding the kinetics of transient states may shed light on new transmission associated phenotypes and lead to new avenues of vaccine development

BACKGROUND
- A variety of techniques are available for measuring kinetics
- Time of addition allows multiple stages to be measured with a single, standardized protocol
- Previous kinetic studies are limited to only a few isolates
- Breadth of kinetics among circulating isolates is not well characterized

GOAL
- Our goal is to characterize the breadth of HIV-1 entry kinetics among circulating HIV Envelope (Env) isolates and isolates associated with transmission

APPROACH
- Time of addition kinetics assay, optimized for reproducibility
- Measure kinetics of six helix bundle formation using T20
- Measure kinetics of co-receptor (CoR) engagement using CCR5 inhibitor maraviroc (MVC)

RESULTS & SIGNIFICANCE
- Very well confined window of average T20 delay (4-16 min).
 - This is only a small part of natural range (<7 min, >40 min).
- Extreme kinetics are rare members of quasiespecies.
- Infant BMT isolates had some of the slowest extremes.
- Prehairpin is exposed during co-receptor engagement.
- Kinetic component of T20 sensitivity linked to co-receptor kinetics.
- Only a few amino acids lie between average and extreme kinetics.
- Kinetic extremes might be part of a normal phenotypic landscape

HIV-1 exhibits a broad and dynamic landscape of kinetic phenotypes that link co-receptor binding to gp41 exposure and sensitivity to gp41-targeting inhibitors.

PRIMARY HIV-1 ISOLATES EXHIBIT BROADLY DIVERSE KINETICS
- 285 primary HIV Env isolates
- Well-formed distribution of T20 delays centered about 4-16 minutes with broad range of extremes from as early as <30 seconds to as late as >32 minutes.

DIVERSE KINETICS LINKED TO BREAST MILK TRANSMISSION
- Similar, diverse range of T20 kinetics for maternal and infant ZEBS isolates.
- Kinetic diversity primarily linked to Env associated with breast milk transmission.
- Both maternal and infant BMT Env can have extremely late T20 delays.
- Infant BMT Env have the latest extremes.

SEQUENCE DETERMINANTS OF INFANT BMT EXTREMES
- Infant isolates associated with breast milk transmission had some of the most extreme T20 delays.
- All at least one of these extreme isolates were found in 3/6 infants associated with breast milk transmission.
- Infant sequences are highly conserved between averages and extreme kinetics

GP41 EXPOSURE IS Driven BY CO-RECEPTOR BINDING
- Measured MVC delay for subset of 48 Envs with diverse T20 delay.
- MVC delay categorized by quartiles as early (Q1), average (Q2 or Q3) or late (Q4).

During the prehairpin exposure occurs after co-receptor binding and before six helix bundle formation.

Funding & acknowledgments

We wish to thank Cindy Dukerich, Eric Hunter and Samantha Burton for their invaluable feedback and for providing an enormous number of primary HIV Envelope plasmids.

Supports the role of co-receptor binding in prehairpin exposure kinetics.

References

For our data support alternative models where prehairpin exposure is defined by co-receptor binding
- Bundle can form before, during or after co-receptor binding.
- MVC delay marks the end of prehairpin exposure and should predict T20 sensitivity.
- T20 - MVC delay should be less than 12 minutes.
- Only isolates with late MVC delays spend most of their time in the prehairpin exposed state.

Prehairpin exposure and T20 sensitivity is driven by co-receptor binding kinetics.

GP41 triggers prehairpin exposure
- One CoR triggers PH bundle formation and should not predict T20 sensitivity.
- T20 - MVC delay should not predict T20 sensitivity.

Co-receptor mechanism
- Standard model of entry says that

MVC delay should be <32 minutes and does not sensitivity, but does

Prehairpin exposure occurs after co-receptor binding and before six helix bundle formation.

Longer prehairpin exposure means more sensitivity to T20.

MVC Delay should not predict T20 sensitivity

MVC Delay should not predict T20 sensitivity

Our data support alternative models where prehairpin exposure is defined by co-receptor binding

Co-receptor mechanism

MVC delay marks the end of prehairpin exposure and should predict T20 sensitivity.

MVC delay should be >32 minutes and does not sensitivity, but does

Prehairpin exposure occurs after co-receptor binding and before six helix bundle formation.

Longer prehairpin exposure means more sensitivity to T20.

MVC Delay should not predict T20 sensitivity

MVC Delay should not predict T20 sensitivity

Only isolates with late MVC delays spend most of their time in the prehairpin exposed state.

For our data support alternative models where prehairpin exposure is defined by co-receptor binding

Prehairpin exposure and T20 sensitivity is driven by co-receptor binding kinetics.

GP41 triggers prehairpin exposure
- One CoR triggers PH bundle formation and should not predict T20 sensitivity.
- T20 - MVC delay should be <32 minutes.

MVC Delay should not predict T20 sensitivity

MVC Delay should not predict T20 sensitivity

Only isolates with late MVC delays spend most of their time in the prehairpin exposed state.

Prehairpin exposure and T20 sensitivity is driven by co-receptor binding kinetics.

GP41 triggers prehairpin exposure
- One CoR triggers PH bundle formation and should not predict T20 sensitivity.
- T20 - MVC delay should be <32 minutes.

MVC Delay should not predict T20 sensitivity

MVC Delay should not predict T20 sensitivity

Only isolates with late MVC delays spend most of their time in the prehairpin exposed state.

Prehairpin exposure and T20 sensitivity is driven by co-receptor binding kinetics.

GP41 triggers prehairpin exposure
- One CoR triggers PH bundle formation and should not predict T20 sensitivity.
- T20 - MVC delay should be <32 minutes.

MVC Delay should not predict T20 sensitivity

MVC Delay should not predict T20 sensitivity

Only isolates with late MVC delays spend most of their time in the prehairpin exposed state.