Safety and Efficacy of DTG vs EFV and TDF vs TAF in Pregnancy: IMPAAACT 2010 TRIAL

L Chinula, SS Brummel, L Ziemba, L Stranix-Chibanda, A Coletti, C Krotje, P Jean-Philippe, L Fairlie, T Vhembo, D Wabwire, RM Hoffman, PE Sax, JS Stringer, JS Currier, S Lockman, on behalf of the IMPAAACT 2010 Study Team
Background and Rationale

• WHO now recommends dolutegravir (DTG)-based antiretroviral treatment (ART) globally, given favorable efficacy, toxicity, resistance, and cost profiles
• Countries are transitioning from efavirenz (EFV)- to DTG-based first-line ART
 – Tenofovir alafenamide fumarate (TAF) is a recommended first-line agent for adults in the US
• *It is essential to obtain pregnancy safety and efficacy data for agents that are expected to be widely used by women during pregnancy, such as DTG and TAF*
• We designed a Phase III, three-arm randomized open-label trial to compare the safety and virologic efficacy of three regimens started by women living with HIV (WLHIV) during pregnancy
Enrollment at 14-28 weeks gestation

Delivery

Completion of follow-up at 50 weeks postpartum

Weeks on Study Antepartum Weeks on Study Postpartum

Arm 1: Maternal DTG+FTC/TAF During Pregnancy and Postpartum
- Maternal follow-up for ~12-26 weeks prior to delivery
- Maternal and infant follow-up for 50 weeks after delivery (infant receives local standard prophylaxis)

Arm 2: Maternal DTG+FTC/TDF During Pregnancy and Postpartum
- Maternal follow-up for ~12-26 weeks prior to delivery
- Maternal and infant follow-up for 50 weeks after delivery (infant receives local standard prophylaxis)

Arm 3: Maternal EFV/FTC/TDF During Pregnancy and Postpartum
- Maternal follow-up for ~12-26 weeks prior to delivery
- Maternal and infant follow-up for 50 weeks after delivery (infant receives local standard prophylaxis)

Key Eligibility Criteria
- Pregnant WLHIV 14-28 weeks gestation
- ART-naïve (up to 14 days ART in current pregnancy allowed)

Participants were enrolled at 22 sites in 9 countries
Study Objectives: Virologic Efficacy

Whether treatment initiated during pregnancy with a DTG-containing regimen (DTG arms combined) is non-inferior to EFV/FTC/TDF with regard to HIV-1 RNA <200 copies/mL at delivery (primary)

• -10% non-inferiority margin in favor of EFV for virologic efficacy
• Assessed superiority after establishing non-inferiority
Study Objectives: Safety

Whether rates of the following outcomes differ for any pairwise regimen comparison:

• **Adverse pregnancy composite outcome** (primary): occurrence of preterm delivery (PTD) <37 weeks, small for gestational age (SGA) <10th centile, stillbirth (SB) ≥20 weeks, or spontaneous abortion (SAB) <20 weeks

• **Maternal grade 3 or higher adverse events** through 50 weeks postpartum (*this analysis includes follow-up through 14 days postpartum*)

• **Infant grade 3 or higher adverse events** through 50 weeks postpartum (*this analysis includes follow-up through 28 days after birth*)

• **Infant neonatal death** (≤28 days) (*post-hoc*)
Screened = 810

Screening failure = 167 (20.6%)
 • Gestational age outside of 14-28 weeks = 66 (40%)
 • Paused study enrollment = 15 (9%)
 • Maternal history of suicidal ideation = 13 (8%)
 • Did not return to clinic = 11 (7%)
 • Mother was not ART-naive = 9 (5%)
 • Multiple gestation or fetal anomaly = 8 (5%)

Enrolled = 643 (79%)

Pregnancy outcome available = 640 (99.5%)

Delivery HIV-1 RNA available = 605 (94%)

Live births = 617 (96%) singletons
Maternal Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>DTG+FTC/TAF (N = 217)</th>
<th>DTG+FTC/TDF (N = 215)</th>
<th>EFV/FTC/TDF (N = 211)</th>
<th>Total (N = 643)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median years)</td>
<td>26.8</td>
<td>26.0</td>
<td>26.6</td>
<td>26.6</td>
</tr>
<tr>
<td>Enrolled in Africa</td>
<td>187 (86%)</td>
<td>189 (88%)</td>
<td>188 (89%)</td>
<td>564 (88%)</td>
</tr>
<tr>
<td>Gestational age (median weeks)</td>
<td>22.1</td>
<td>21.3</td>
<td>22.1</td>
<td>21.9</td>
</tr>
<tr>
<td>CD4 count (median cells/mm(^3))</td>
<td>467</td>
<td>481</td>
<td>439</td>
<td>466</td>
</tr>
<tr>
<td>HIV-1 RNA (median copies/mL)</td>
<td>781</td>
<td>715</td>
<td>1357</td>
<td>903</td>
</tr>
<tr>
<td>HIV-1 RNA <50</td>
<td>36 (17%)</td>
<td>37 (17%)</td>
<td>27 (13%)</td>
<td>100 (16%)</td>
</tr>
<tr>
<td>ART in pregnancy prior to entry</td>
<td>176 (81%)</td>
<td>180 (84%)</td>
<td>176 (83%)</td>
<td>532 (83%)</td>
</tr>
<tr>
<td>Median days on ART</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Median duration of antepartum follow-up: 17.4 weeks
Virologic Suppression at Delivery was Significantly Higher in the DTG Arms Compared with EFV Arm

Proportion of women with HIV-1 RNA <200 copies/mL at delivery visit:

Combined DTG-ART arms vs EFV/FTC/TDF arm

Risk difference 6.5% (2.0%, 10.7%) p=0.005

Risk difference 6.0% (1.6%, 10.3%) p=0.008

DTG arms had shorter time to viral suppression: log-rank p-value <0.001
Adverse Pregnancy Outcomes by Arm

Notes: stillbirth was post-hoc analysis; and no spontaneous abortions occurred
Maternal and Infant
Grade 3 or Higher Adverse Events by Arm

- Maternal grade ≥3 AE
 - DTG+FTC/TAF: 20.7%
 - DTG+FTC/TDF: 26.0%
 - EFV/FTC/TDF: 22.3%
 - p=0.27
 - p=0.58

- Infant grade ≥3 AE
 - DTG+FTC/TAF: 13.9%
 - DTG+FTC/TDF: 16.3%
 - EFV/FTC/TDF: 20.8%
 - p=0.51
 - p=0.069

- Neonatal death
 - DTG+FTC/TAF: 1.0%
 - DTG+FTC/TDF: 1.5%
 - EFV/FTC/TDF: 4.8%
 - p=0.63
 - p=0.019
 - p=0.053
Maternal and Infant Grade 3 or Higher Adverse Events by Arm

- Maternal grade ≥3 AE: 20.7%, 26.0%, 22.3%
- Infant grade ≥3 AE: 13.9%, 16.3%, 20.8%
- Neonatal death: 1.0%, 1.5%, 4.8%

Legend:
- DTG+FTC/TAF
- DTG+FTC/TDF
- EFV/FTC/TDF
Average Weekly Maternal Weight Gain by Arm

Recommended IOM weight gain 2nd/3rd trimesters (0.42 kg/week)

- DTG+FTC/TAF: 0.378 kg/week, p=0.011
- DTG+FTC/TDF: 0.319 kg/week
- EFV/FTC/TDF: 0.291 kg/week, p=0.19

p<0.001

Not statistically significant
Conclusions

• All three study regimens showed high efficacy, and safety that was similar to or better than that observed in other studies of ART in pregnancy
• DTG-containing ART had superior virologic efficacy at delivery compared to EFV/FTC/TDF
• DTG+FTC/TAF was associated with significantly fewer adverse pregnancy outcomes (driven by lower preterm and SGA rates) and fewer neonatal deaths than EFV/FTC/TDF
• Results affirm the WHO recommendation to use DTG in all populations, including during pregnancy, and showed that TAF may be preferable to TDF in pregnancy
Acknowledgements

The IMPAACT 2010/VESTED Protocol Team gratefully acknowledges the dedication and commitment of the 643 mother-infant pairs, their communities, and CAB representatives, without whom this study would not have been possible.

Sponsors:
US National Institutes of Health (Patrick Jean-Philippe, Renee Browning, Lynette Purdue, Nahida Chakhtoura)
Gilead Sciences, Mylan, ViiV Healthcare Ltd

Protocol Co-Chairs: Shahin Lockman and Lameck Chinula
Operations Center: Anne Coletti and Katie McCarthy
Statistical and Data Management Center: Sean Brummel, Lauren Ziembay, Benjamin Johnson, Chelsea Krotje, Kevin Knowles, Kyle Whitson
Laboratory Center: Frances Whalen, William Murtaugh, Sikhulile Moyo

Community: Nagawa Jaliaah, Cheryl Blanchette

Site Investigators of Record:
Botswana: Gaborone and Molepolole: Gaerolwe Masheto
India: BJMC: Pradeep Sambarey
South Africa: Umlazi: Sherika Hanley; FAMCRU: Gerhard Theron; Soweto: Haseena Cassim; Wits RHI Shandukani: Lee Fairlie
Tanzania: KCMC: James Ngocho
Thailand: Siriraj: Kulkanya Chokephaibulkit; Chiang Rai: Jullapong Achalapong; Chiang Mai Univ: Linda Aurbpibul
Uganda: MUJHU: Deo Wabwire; Baylor-Uganda: Violet Korutaro
United States: Univ Miami: Gwendolyn Scott; Univ Fl Jacksonville: Mobeen Rathore
Zimbabwe: St. Mary’s: Patricia Mandima; Seke North: Lynda Stranix-Chibanda; Harare Family Care: Tichaona Vhembo
Acknowledgements

IMPAACT 2010/VESTED is funded by the US National Institutes of Health (NIH).

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health (NIMH), all components of the National Institutes of Health (NIH), under Award Numbers UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC) and UM1AI106716 (IMPAACT LC), and by NICHD contract number HHSN275201800001I.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

The study products were provided by ViiV Healthcare Ltd, Gilead Sciences, Mylan.