Biomarkers of HIV persistence as predictors of HIV rebound off ART

Robert F. Siliciano MDPhD Johns Hopkins University School of Medicine Howard Hughes Medical Institute

Disclosures: None

BILL& MELINDA GATES foundation

HHMI HOWARD HUGHES MEDICAL INSTITUTE

The latent reservoir in resting CD4+ T cells is the major barrier to cure

Strain et al., PNAS, 20003

Slow decay of the reservoir

The Mississippi baby

Persaud D et al., NEJM 2013

Biomarkers for HIV persistence

•Non-viral biomarker

Suboptimal environment for HIV-1 transcription facilitates latency

- Latency can be established rapidly with minimal HIV gene expression
- Cells can persist with minimal viral gene expression for years
- Is it plausible that there will be a permanent change in host gene expression? Activated CD4+ T cells

MP CD4⁺ T cells

Shan et al., submitted

An assay for latently infected cells

Finzi et al., Science, 1997

Viral outgrowth vs PCR assays

Non-induced proviruses

ART initiated in chronic infection

ART initiated during acute infection

Landscape of HIV proviruses

- Arise during (-) strand synthesis
- Not in plasma virus
- Missed by subgenomic PCR

Bruner et al, Nature Med 2016

QVOA, intact, and total proviruses

- Are they replication-competent?
- Can they be induced in vivo?

Ho et al Cell, 2013 Bruner et al, Nature Med 2016

Replication capacity of intact noninduced proviruses

Can intact non-induced proviruses be induced?

Ho et al Cell, 2013 Hosmane et al, JEM in press

Repetitive stimulation induces additional proviruses

Ho et al Cell, 2013 Hosmane et al, JEM in press

QVOA, intact, and total proviruses

- •Each round of stimulation induces additional proviruses
- •A single round of maximal T cell activation does not induce all latent proviruses
- •The number of intact proviruses provides a much more accurate upper limit on reservoir size than standard DNA PCR assays
- •We need a scalable assay for intact proviruses to guide clinical trials of cure strategies

Ho et al Cell, 2013 Bruner et al, Nat Med, 2016 Hosmane et al, JEM in press

Best assay for latent reservoir?

Best assay for latent reservoir?

Detection and Analysis

Sample results on patient samples

Expanded clones with major defects

Bruner et al, Nat Med 2016

Bailey et al, J. Virol., 2006

- In half of patients studied, residual viremia is dominated by a small number of clones
- These sequences do not show evidence of sequence evolution.
- These sequences appear to represent clonal expansion of individual infected cells

Bailey et al, J. Virol., 2006

Clonal expansion detected by integration site analysis

Wagner et al, Science, 2014

Proliferation of infected cells

 Antigen drives T cell proliferation but also induces viral gene expression. Productively infected cells die quickly.

 Cytokines like IL-7 can drive homeostatic proliferation of memory T cells, possible expanding the reservoir, but may also reverse latency.

Fundamental assumption of cure strategies

- Generation of new latently infected cells is completely stopped by ART
- Therefore, reductions induced by curative strategies are stable
- Repeat cycles may lead to cure

In vitro proliferation of latently infected cells

Independent isolates of replicationcompetent HIV with identical sequence

Hypotheses to explain identical isolates

Intrapatient genetic distances between isolates

Expanded cellular clones account for the majority of the reservoir

Slow decay may reflect more rapid decay balanced by proliferation

Finzi et al., Nature Med., 1999 Siliciano et al., Nature Med., 2003

- Predominant plasma clones wax and wane over time
- Consistent with antigen driven proliferation rather than a general homeostatic process or a cell autonomous proliferative stimulus based on integration site

Time to rebound

Hill et al, PNAS 2014

Thanks

Thanks

Collaborators

Steve Deeks Doug Richman Brad Jones Richard Flavell Dave Margolis Joel Gallant Joe Cofrancesco Jon Karn Martin Nowak Matt Strain Sarah Palmer Una O'Doherty Joe Wong Steve Yukl John Mellors

Funding

NIH: Martin Delaney Collaboratories CARE and DARE
Howard Hughes Medical Institute
Foundation for AIDS Research (amFAR): ARCHE
Johns Hopkins Center for AIDS Research
Bill and Melinda Gates Foundation

Strategy for unbiased analysis of proviruses

Step 2: gag and env inner PCRs to confirm clonal dilution

Step 3: Subject all wells to 6 inner PCRs, regardless of positivity for gag or env inner PCRs

Step 4: Visualize PCRs on a gel and directly sequence products to determine whether a provirus is genetically intact or defective

Methods

 Δ del

Step 4: Visualize PCRs on a gel and directly sequence products to determine whether a provirus is genetically intact or defective

