P1108: IMPACT ON POLICY AND ACCESS TO BEDAQUILINE IN CHILDREN WITH MDR-TB

Anneke C. Hesseling, MD, PhD Desmond Tutu TB Centre Stellenbosch University South Africa

IMPAACT

International Maternal Pediatric Adolescent AIDS Clinical Trials Network

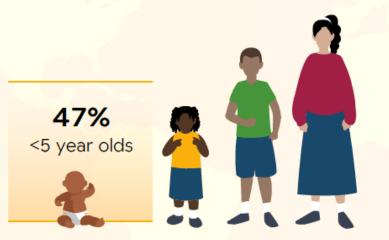
"OF TRIALS, TRIBULATIONS AND FORMULATIONS"

INPAACT

International Maternal Pediatric Adolescent AIDS Clinical Trials Network

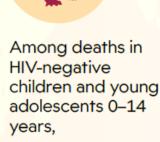
Outline

- 1. Global burden: MDR/RR-TB "MDR-TB"
- 2. Historical context: MDR TB treatment in children
- 3. Lack of access despite adult trials
- 4. P1108: challenges and opportunities
- 5. Impact on guidelines and access
- 6. Future directions



TB incidence and mortality in children and adolescents, 2022

children (0-14 years) developed TB in 2022 (12% of all TB)



727 000 adolescents

(10-19 year-olds) developed TB in 2012 (Snow et al, 2018)

214 000

TB deaths in 2022 (16% of all TB deaths)

1.3 million

TB deaths in 2022

76% were in children <5 years

96%

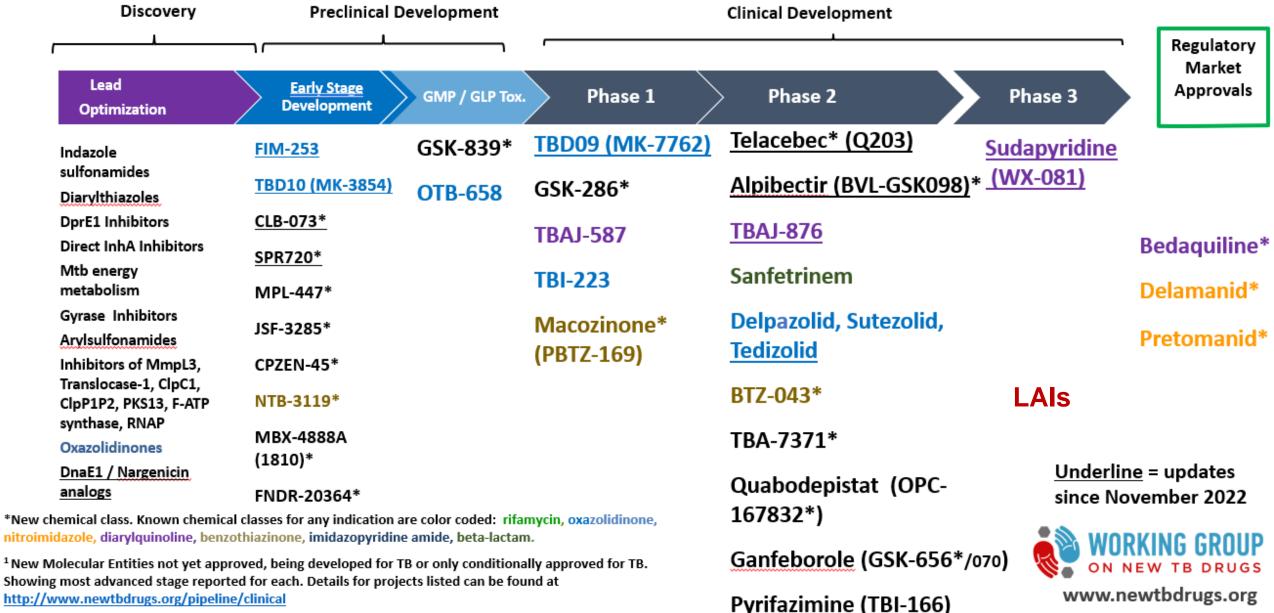
of deaths occurred in children who did not access TB treatment

(Dodd et al, 2017)

31 000

(14%) TB deaths in the 0–14 year age group were among children living with HIV

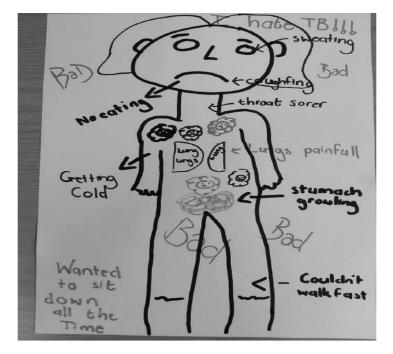
G



Estimated number of people who developed MDR/RR-TB (incident cases) in 2022, for countries with at least 1000 incident cases^a

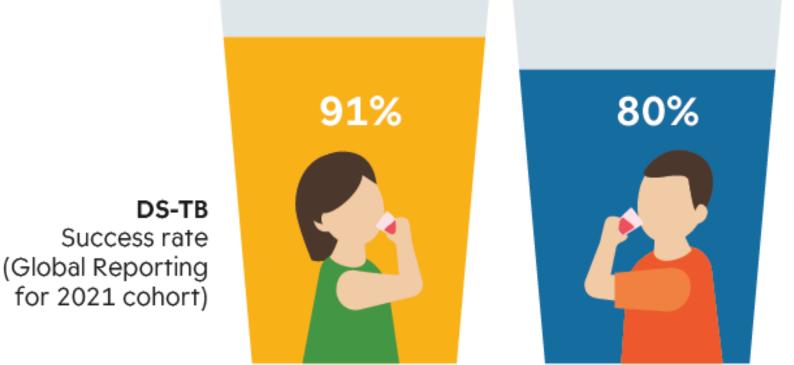
2024 Global New TB Drug Pipeline¹

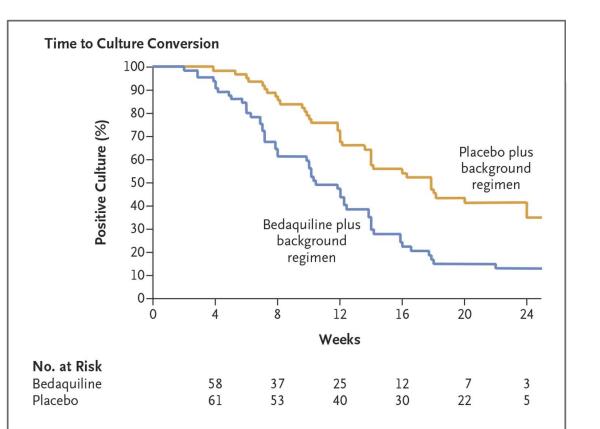
Undated: March 2024


http://www.newtbdrugs.org/pipeline/clinical

Ongoing projects without a load compound identified; http://www.powthdrugs.org/pipolipo/discovery/

MDR-TB

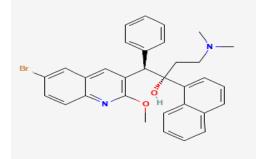

DS-TB


Treatment outcomes

Treatment outcomes DS- and MDR/RR-TB in 0–14 years

MDR/RR-TB Success rate (paediatric DR-TB IPD, N=7 115) (Garcia-Prats, personal communication)

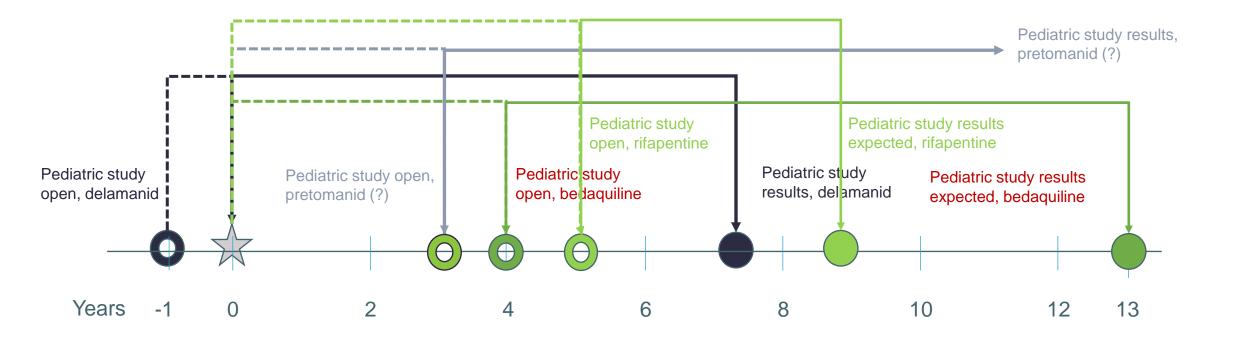
ORIGINAL ARTICLE


Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

Andreas H. Diacon, M.D., Ph.D., Alexander Pym, M.D., Ph.D., Martin P. Grobusch, M.D., Ph.D., Jorge M. de los Rios, M.D., Eduardo Gotuzzo, M.D., Irina Vasilyeva, M.D., Ph.D., Vaira Leimane, M.D., Koen Andries, D.V.M., Ph.D., Nyasha Bakare, M.D., M.P.H., Tine De Marez, Ph.D., Myriam Haxaire-Theeuwes, D.D.S., Nacer Lounis, Ph.D., Paul Meyvisch, M.Sc., Els De Paepe, M.Sc., Rolf P.G. van Heeswijk, Pharm.D., Ph.D., and Brian Dannemann, M.D., for the TMC207-C208 Study Group*

Time to Sputum-Culture Conversion in the Modified Intention-to-Treat Population.

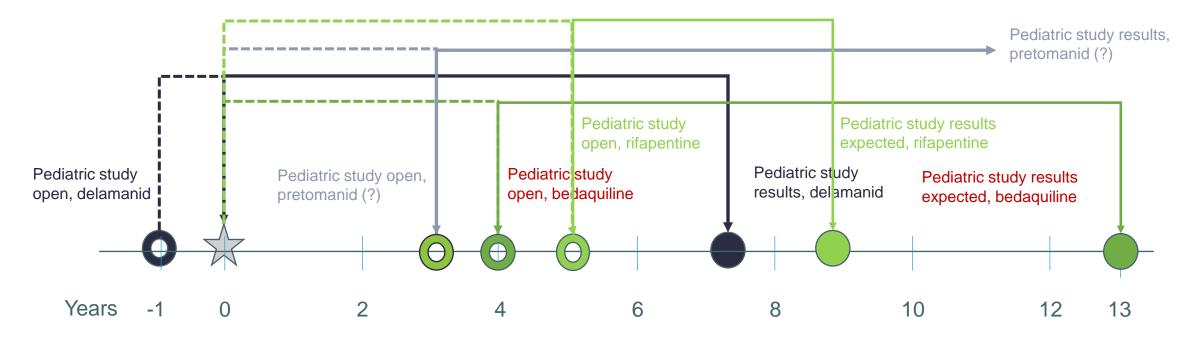
Diacon AH et al. N Engl J Med 2014;371:723-732



Bedaquiline

- SIRTURO, Janssen
- Diarylquinoline
- Targets ATP synthase enzyme of *M.tb* generating energy supply
- Concern: QTcF prolongation
- Initial black box warning adults
- Very long t $\frac{1}{2}$
- Dramatic reduction in MDR-TB mortality

Groups & steps	Medicine	
	Levofloxacin <i>or M</i> oxifloxacin	Lfx Mfx
roup A: clude all three modicines	Bedaquiline	Bdq
clude all three medicines	Linezolid	Lzd
roup B:	clofazimine	Cfz
dd one or both medicines	cycloserine OR	Cs
	terizidone	Trd
	ethambutol	E
	Delamanid	Dlm
	Pyrazinamide	Z
roup C:	imipenem-cilastatin OR	lpm–Cln
	Meropenem	Mpm
dd to complete the regimen and when medicines from	amikacin	Am
roups A and B cannot be used	(OR streptomycin)	(S)
	ethionamide OR	Eto
	Prothionamide	Pto
	p-aminosalicylic acid	PAS


Historically delayed pediatric TB therapeutic research

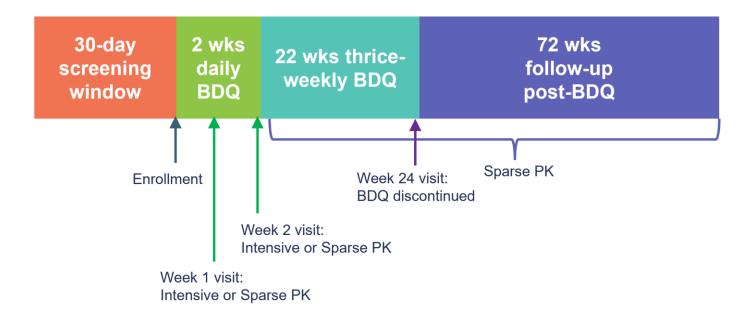
 $\sum_{i=1}^{n}$

Stringent Regulatory Authority (SRA) approval granted for adults, all drugs

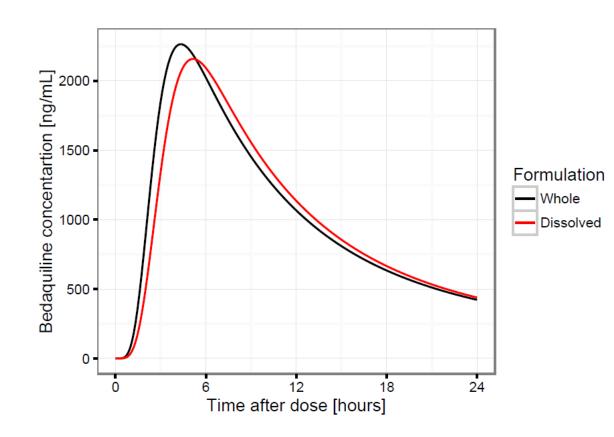
Historically delayed pediatric TB therapeutic research

BDQ: FDA granted accelerated approval in adults: 2012 FDA paediatric (>5 y) and formulation approval: 2020

Stringent Regulatory Authority (SRA) approval granted for adults, all drugs


P1108: Phase I/II, Open-Label, Single Arm Study to Evaluate the PK, Safety and Tolerability of Bedaquiline Given in Combination with an Individualized RR-TB Therapy in Infants, Children, and adolescents with RR-TB Disease, Living with or without HIV

- Determine BDQ doses that achieve similar weekly exposure (AUC) of BDQ compared to adults taking BDQ at current recommended WHO dose.
- Evaluate safety and tolerability of BDQ over 24-week dosing period +2 years
- Conceived early implemented later due to industry not implementing PIP = lack of access
- Parallel industry-funded study C211 opened later, no data yet in < 2 years, CLWH
- P1108: enrolment started 2017, completed 2023 (all under version 1.0)


P1108 design features

- BDQ added as single drug to "optimized background regimen" evolving
- Minimal age de-escalation
- Population PK modeling with dose adjustment
- Intensive and sparse PK sampling
- Mini-cohorts with PK and safety targets
- Real-time safety monitoring
- Pragmatic use of adult formulation
- Weight-banded dosing

Lack of access to paediatric formulation: pragmatic solution BDQ CRUSH Impact of dissolving on a typical BDQ PK profile

- Mean absorption time slightly longer for dissolved tablets: +23% (p=0.03, Cl_{95%} 2.1-48%)
- T_{max}: 4.3 to 5.2h
- $C_{max}: \downarrow 5\%$

Difference in bioavailability dissolved vs whole tablets not statistically significant (p=0.92, $Cl_{95\%}$ 94-108%) \rightarrow Bioequivalence criteria fulfilled Svensson, BJ Pharm 2018

- PK model developed from adult data with MDR-TB, study C208,C209, adapted
- Included covariate effects, adapted as data emerged. Body weight, abumin concentrations time varying
- Age maturation function characterizing the development of CYP3A4 with increasing age
- Apparent clearance at week 24 and weekly dose \rightarrow BDQ weekly AUCss

Elin Svensson

	Cohort	Age and Weight	BDQ Dosing
	<u>Cohort 1</u> Un to 24 portionents to	$\geq 6 \text{ to } < 18 \text{ years}$ $\geq 30 \text{ kg}$	Participants ≥30 kg: 400 mg once per day through
	Up to 24 participants to achieve 18 evaluable (approximately nine in each weight band)	$\geq 6 \text{ to } < 18 \text{ years}$ $\geq 15 \text{ to } < 30 \text{ kg}$	the intensive PK sampling visit*, then 200 mg three times per week on Monday, Wednesday, and Friday
	Cohort 2 Up to 30 participants to achieve 18 evaluable	\geq 2 to < 6 years >7 kg	through the Week 24 visit Participants >7 to <30 kg 200 mg once per day through
sson			the intensive PK sampling visit*, then 100 mg three times per week on Monday, Wednesday, and Friday through the Week 24 visit
UPPSALA	Cohort 3 Up to 30 participants to achieve 18 evaluable	≥ 0 to < 2 years ≥ 3 kg	Participants ≥ 3 to ≤ 7 kg: 100 mg once per day through the intensive PK sampling visit*, then 50 mg
UNIVERSITET			three times per week on Monday, Wednesday, and Friday through the Week 24 visit

EM Svensson et al. CPT:PSP, 2016, 5(12)

P1108 Sites

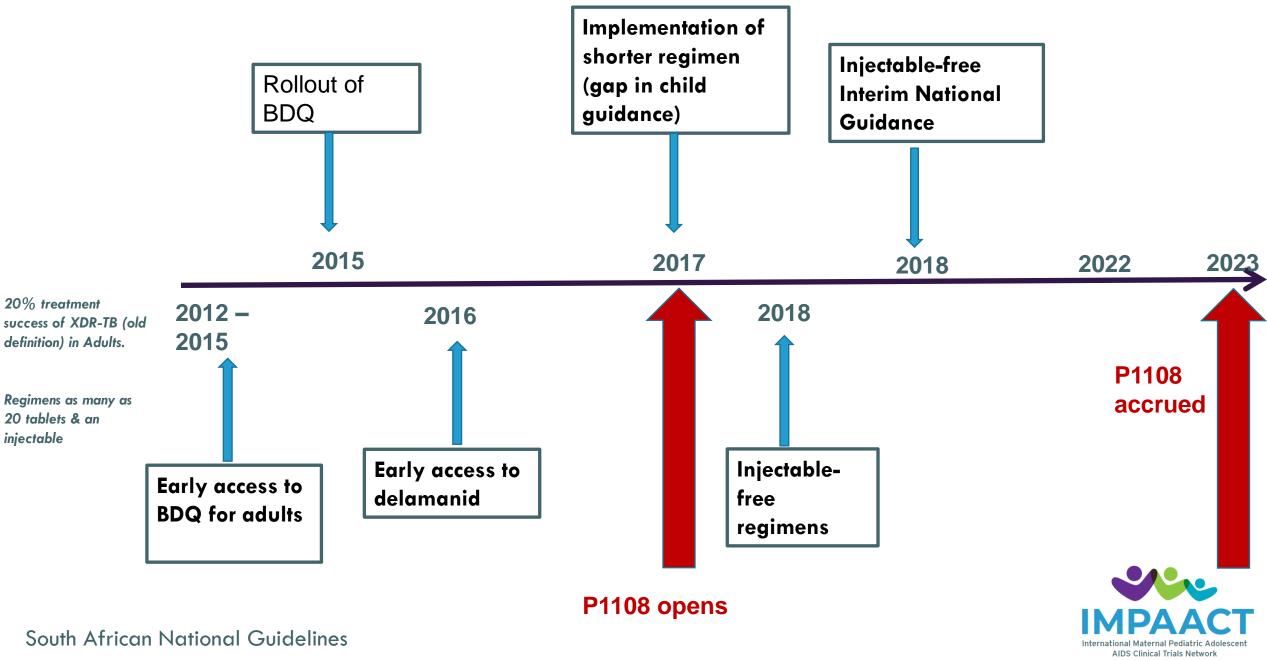
TE

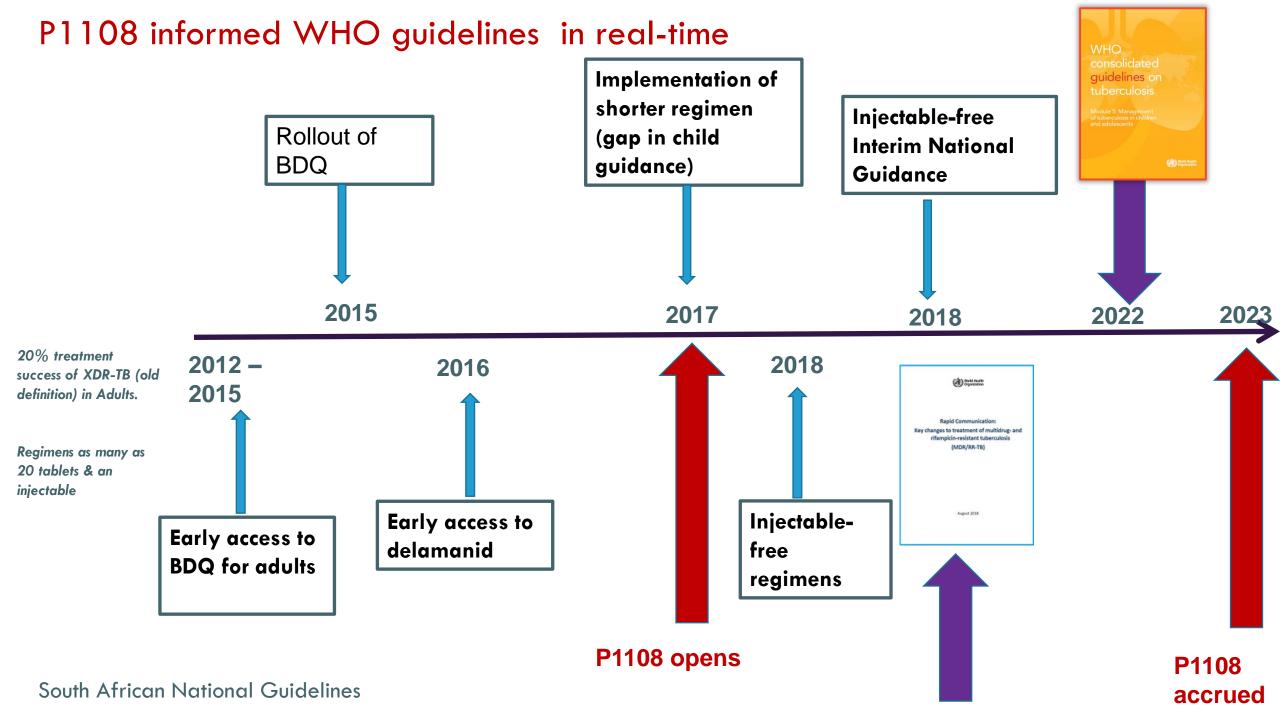
A Second

<u>Haiti</u> GHESKIO (CRS 30022)

18

<u>South Africa</u> DTTC (CRS 31790) Sizwe (CRS 31929) Matlosana (CRS 31976)




Baseline characteristics in children enrolled in P1108 (n=54)

		Cohort 1 6-<18 y (n=18)	Cohort 2 (2-<6 y) (n=18)	Cohort 3 (0-<2 y) (n=18)	Overall N=54
Sex	Female	12 (67%)	9 (50%)	9 (50%)	30 (56%)
Race	African black	15 (83%)	10 (56%)	15 (83%)	40 (74%)
Age, years	Median	12.7 (7.0-13.9)	3.4 (2.8-4.4)	1.2 (0.7-1.8)	3.4 (1.8-7.0)
HIV status	LWH	5 (28%)	1 (6%)	2 (11%)	8 (15%)
WFA z score	Median	-1.5 (-2.3, -0.2)	-1.3 (-1.8,-0.3)	-1.9 (-2.9, 0.1)	-1.6 (-2.3-,-0.2)

P1108 informed WHO guidelines in real-time

Use of **bedaquiline** and delamanid in children

- In children with MDR/RR-TB aged <u>below 6 years</u>, <u>an all-oral treatment regimen containing</u> <u>bedaquiline may be used</u>
- In children with MDR/RR-TB aged <u>below 3 years</u>, delamanid may be used as part of longer regimens

Remarks:

- Applies to and complements current WHO recommendations on shorter and longer regimens that contain bedaquiline
- Complements the current WHO recommendation on longer regimens that contain delamanid

These recommendations make it possible to build all oral regimens for children of all ages: 9-12 months

Bedaquiline WHO provisional dosing recommendation

Weight range ^a	Age category	Dosing of bedaquiline ^b
3 to <5 kg	0 to <3 months	30 mg QD/10 mg TIW
	≥3 months	60 mg QD/20 mg TIW
E to z7 kg	0 to <3 months	30 mg QD/10 mg TIW
5 to <7 kg	≥3 months	60 mg QD/20 mg TIW
7 to <10 kg	0 to <3 months	30 mg QD/10 mg TIW
	3 to <6 months	60 mg QD/20 mg TIW
	≥6 months	80 mg QD/40 mg TIW
10 to <16 kg	3 to <6 months	60 mg QD/20 mg TIW
10 t0 < 10 kg	≥6 months	120 mg QD/60 mg TIW
16 to <24 kg	-	200 mg OD / 100 mg TIM /
24 to <30 kg	-	200 mg QD/100 mg TIW
30 to <35 kg ^c	-	
35 to <50 kg	-	400 mg QD/200 mg TIW
≥50 kg	-	

Health ization

WORLD CONFERENCE ON LUNG HEALTH 2022 The Union COMBATING PANDEMICS: TODAY & TOMORROW

Virtual Event November 8-11

Treatment outcomes in young children with RR-TB treated with regimens including bedaquiline and delamanid: a global individual patient data meta-analysis

Maria Garcia-Cremades¹²", Anneke C. Hesseling³, Vivian Cox³, Kendra Radtke¹, Tamara Kredo⁴, Alexander Floren¹, Rory Dunbar³, Rada Savic¹¹, Anthony Garcia-Prats³⁵

¹University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, USA. ²Complutense University of Madrid, Department of Pharmaceutics and Food Technology, Madrid, Spain, ³Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa, ⁴Cochrane South Africa, South Africa, Medical Research Council, Cape Town, South Africa.⁵ University of Wisconsin School of Medicine and Public Health, Department of Paediatrics, Wisconsin, USA

E-Poster No. EP-06-651

Introduction

There is limited access to the novel drugs including bedaguiline (BDQ) and delamanid (DLM) in young children due to limited data on outcomes, dosing and safety.

We determined treatment outcomes in children< 6 years of age routinely receiving RR-TB treatment reaimens including BDO or DLM

Methods

Systematic review and IPD-MA included children and adolescents (0-19 years) treated for RR-TB.

We performed a matched analysis evaluating key outcomes using propensity-matching (age, sex) and exact matching (HIV status, previous TB treatment, bacteriologically-confirmed, AFB-positive) for:

Children aged <6 years treated with BDO

Children aged <3 years treated with DLM

Results

Data from 24,231 children, from 44 studies were included. from 18 countries.

 Children <6 years who received BDQ (n=40) were more likely to be HIV positive, have confirmed/smearpositive RR-TB, with no significantly difference in treatment success.

They received shorter treatment duration and were less likely to receive an injectable (p<0.01).

 <u>Children <3 years who received DLM</u>: limited data (n=7, all favourable outcomes)

Discussion

Few young children globally received BDO or DLM. given the lack of formal recommendation to use BDO or DLM in these age groups. Overall outcomes in young children with RR-TB were excellent (Table 1, Table 5).

These data informed WHO 2022 guidelines recommending BDQ and DLM in children across the entire age spectrum.

Bedaquiline use was significantly associated with shorter RR-TB treatment duration and less injectable drug use in children <6 years

vith written informed consent, Desmomd Tutu TB Centr

Extra Tables & Figures

Table 1. Key characteristics among children <6 years of age with RR-TB stratified by BDQ use

	No BDQ (n=1992)	BDQ (n=40)
Treatment success	1,676 (84.1%)	30 (75.0%)
Age in years, Mean (SD)	2.32 (1.55)	1.23 (1.66)
Male sex	977 (49.0%)	19 (47.5%)
HIV Positive	364 (20.0%)	12 (30.0%)
Bacteriologically confirmed	1237 (79.8%)	31 (96.9%)
AFB smear positive	273 (21.9%)	17 (48.6%)
Pulmonary TB	1669 (90.8%)	37 (92.5%)
Extrapulmonary TB	352 (20.1%)	2 (5.3%)
Extended resistance		
FQN or SLI resistance	83 (41.9%)	4 (66.7%)
FQN and SLI resistance	115 (58.1%)	2 (33.3%)

Table 2. Effect of BDO on treatment success (treatment completion and cure vs. death or treatment failure)

	Bdq given	Bdq NOT given	Matched multivariate mode regression	
	(success/total)	(success/total)	Adjusted OR	p-value
			(95%CI)	
Bdq	24/27 (89%)	485/498 (97%)	0.94	0.9
<6 years	24/27 (05/0)	403/430 (3770)	(0.09, 10.3)	0.5
tervention:	All-oral regimen with I	3DQ		

Comparator: All-oral regimen without BDO

Table 3 Effect of BDO on RR-TR treatment duration

	Bdq given Duration in	Bdq NOT given Duration in	Matched linear m regression	iodel
	months mean, (SD)	months mean, (SD)	Estimate drug effect (months) (95%CI)	p-value
Bdq <6 years	13.3 (5.9)	16.4 (5.8)	-3.47 (-6.0, -0.91)	0.008
Intervention:	Ay regimen with BDQ			

Comparator: Any regimen without BDC

Table 4. Effect of BDQ on the use of any injectable drug

			Matched multivariate mode	
	Bdq given	Bdq NOT given	regressio	n
	(Inj given/total)	(Inj given/total)	Adjusted OR	p-value
			(95%CI)	
Bdq <6 years	6/33 (18%)	1075/1573 (68%)	0.12 (0.05,0.32)	<0.001
	Ay regimen with BDQ			
Comparator: Any regimen without BDQ				

Table 5. Key characteristics among children with RR-TB treated with DLM

	< 3 years of age (n=7)	3 to <6 years of age (n=14)
Treatment success	7 (100.0%)	14 (100.0%)
Age in years, Mean (SD)	1.29 (0.951)	4.071 (0.917)
Male sex	3 (47.5%)	7 (50.0%)
HIV Positive	O (0.0%)	1 (7.1%)
Bacteriologically confirmed	5 (100%)	8 (61.5%)
AFB smear positive	2 (28.6%)	0 (0.0%)
Pulmonary TB	4 (57.1%)	6 (42.9%)
Extrapulmonary TB	3 (42.9%)	8 (57.1%)
Extended resistance		
FQN or SLI resistance		O (O.O%)
FQN and SLI resistance	1 (100%)	1 (100%)

AIDS Clinical Trials Network

More practical dosing needed in children: proposed once-daily dosing strategy for BDQ with new WHO harmonized weight bands

Joint age- and weight- banded dosing approaches

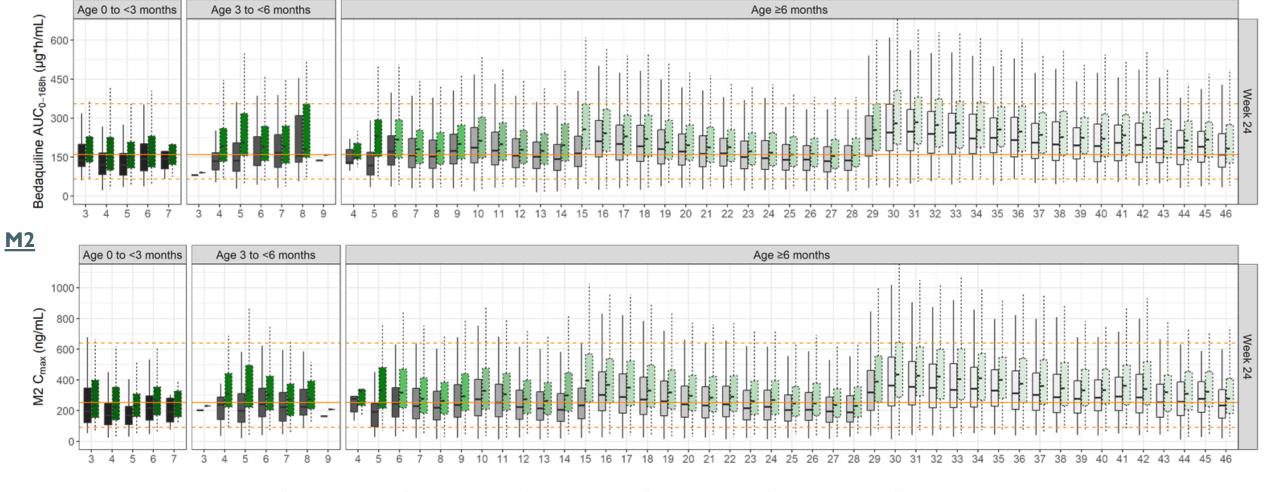
Harmonized weight bands across the therapeutic areas^[1] were assessed

Used published population PK model (Svensson model^[2]) as a base

Model developed using data from P1108, once daily regimen strategy

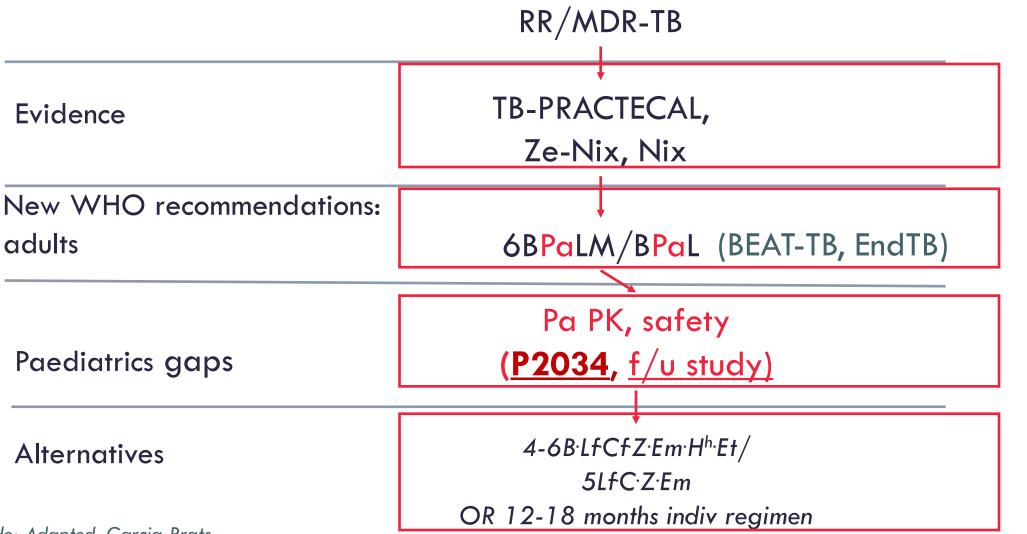
Yu-	ou	Lir

	Bedaquiline				
	Age category	WHO weight band	WHO-recommended dosing	Harmonized weight band	Proposed once-daily dosing
	0 to $<$ 3 months	All	30 mg QD / 10 mg TIW	All	30~mg~QD / $5~mg~QD$
	3 to < 6 months	All	60 mg QD / 20 mg TIW	All	60 mg QD / 10 mg QD
	\geq 6 months	3 to < 7 kg	60~mg~QD / $20~mg~TIW$	3 to < 6 kg	60~mg~QD / $10~mg~QD$
		7 to < 10 kg	80 mg QD / 40 mg TIW	6 to < 10 kg	80 mg QD / 20 mg QD
		10 to < 16 kg	120~mg~QD / $60~mg~TIW$	10 to < 15 kg	120~mg~QD / $30~mg~QD$
	16	16 to < 30 kg	200 mg QD / 100 mg TIW	15 to < 30 kg	200 mg QD / 50 mg QD
Elin Svensson)	\geq 30 kg	400~mg~QD / $200~mg~TIW$	\geq 30 kg	400~mg~QD / $100~mg~QD$



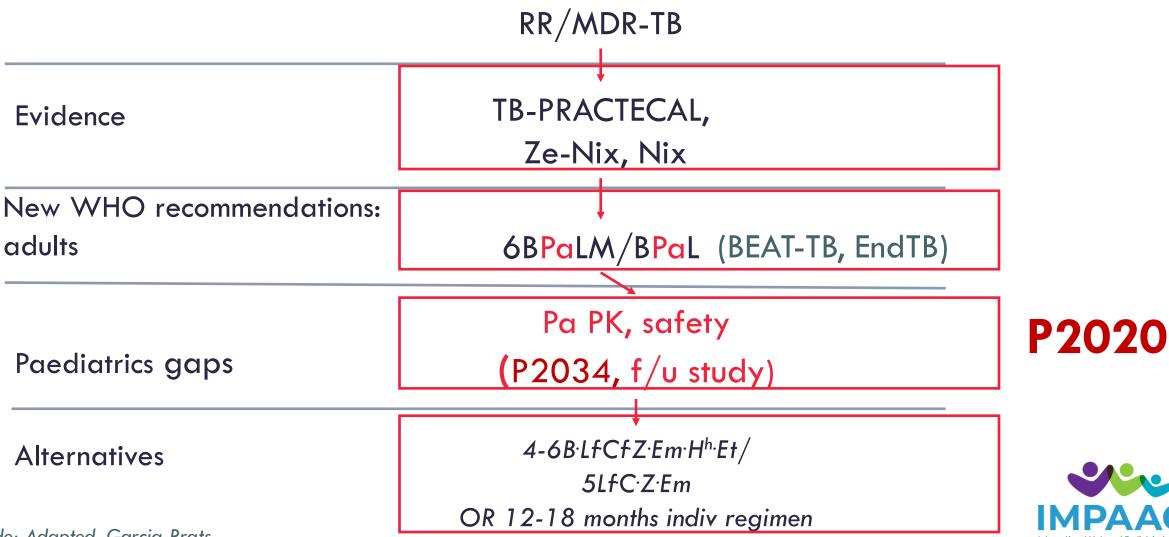
¹Waalewijn H et al. Denver, Colorado; Abstract No.940. (2024) ²Svensson EM, Dosne A, Karlsson MO. CPT Pharmacomet Syst Pharmacol. (2016)

Predicted exposures of bedaquiline and metabolite M2 in children

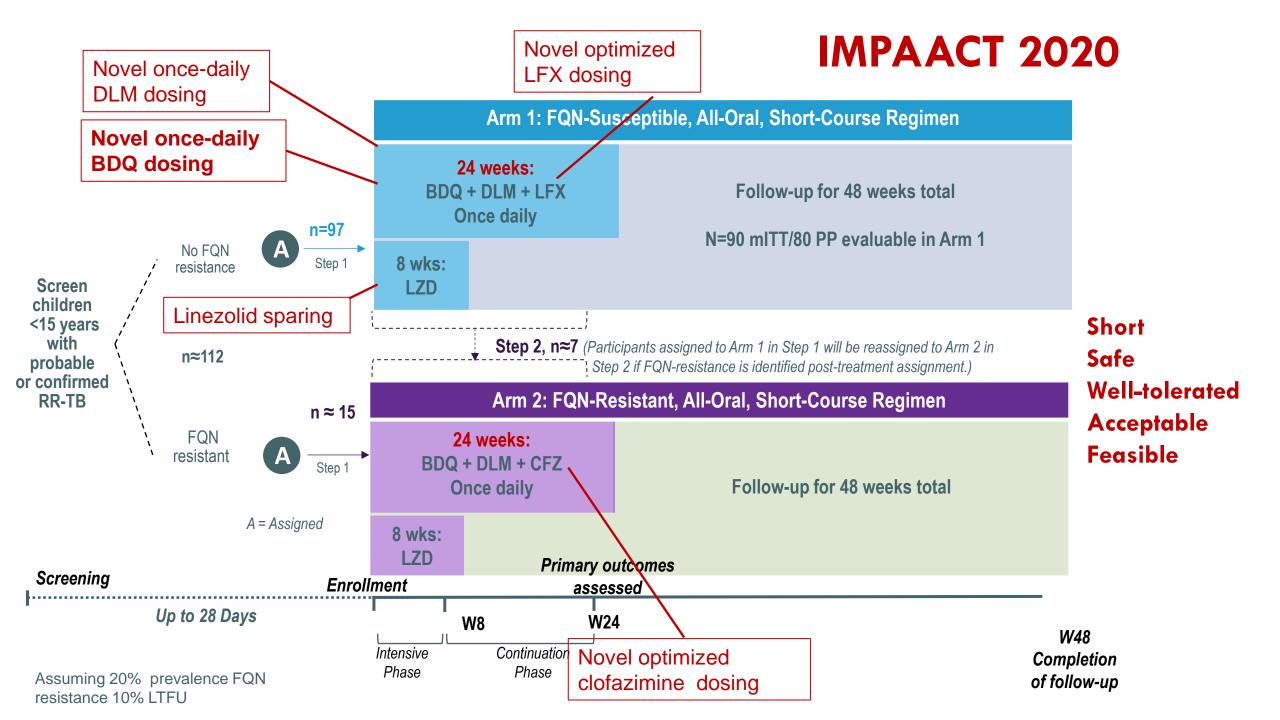

Bedaquiline

🗰 WHO - 10 mg TIW 🛑 WHO - 20 mg TIW 🛱 WHO - 40 mg TIW 🛱 WHO - 60 mg TIW 🛱 WHO - 100 mg TIW 🛱 WHO - 200 mg TIW

📕 Daily - 5 mg QD 🛛 📫 Daily - 10 mg QD 🛑 Daily - 20 mg QD 🛑 Daily - 30 mg QD 📋 Daily - 50 mg QD 📋 Daily - 100 mg QD


Paediatric MDR-TB regimens still lag behind access in adults

International Maternal Pediatric Adolescent AIDS Clinical Trials Network


Slide: Adapted, Garcia-Prats

Paediatric MDR-TB regimens still lag behind access in adults

AIDS Clinical Trials Network

Slide: Adapted, Garcia-Prats

P1108 results: Union Late Breaker Session November 2024

Thank you to participants, families, communities, site personnel and IMPAACT P1108 team, funders

