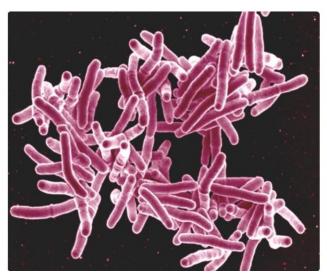


PREDICTR Consortium Reimagining TB Regimen Development

UM1 PReDiCTR-TB Consortium Kickoff Meeting


Rada Savic, PhD, MBA UCSF

September 26, 2024

Exciting Times for TB Drug Development

First ever 4-month Regimen for DS-TB

ESTABLISHED IN 1812

Landmark Study Identifies Short-Course TB Treatment

A new four-month daily treatment regimen is as safe and effective as the existing standard six-month regimen at curing drug-susceptible tuberculosis (TB) disease, according to results from a clinical trial led by CDC with collaboration from NIAID. Shortening treatment for TB disease enables patients to be cured faster, and has the

VOL. 386 NO. 10

First 4-month Treatment for children

The NEW ENGLAND JOURNAL of MEDICINE

MARCH 10, 2022

Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children

A. Turkova, G.H. Wills, E. Wobudeya, C. Chabala, M. Palmer, A. Kinikar, S. Hissar, L. Choo, P. Musoke, V. Mulenga, V. Mave, B. Joseph, K. LeBeau, M.J. Thomason, R.B. Mboizi, M. Kapasa, M.M. van der Zalm, P. Raichur, P.K. Bhavani, H. McIlleron, A.-M. Demers, R. Aarnoutse, J. Love-Koh, J.A. Seddon, S.B. Welch, S.M. Graham, A.C. Hesseling, D.M. Gibb, and A.M. Crook, for the SHINE Trial Team*

First ever 6-month Regimen for XDR/MDR -TB

Treatment of Highly Drug-Resistant Pulmonary Tuberculosis

Francesca Conradie, M.B., B.Ch., Andreas H. Diacon, M.D., Nosipho Ngubane, M.B., B.Ch., Pauline Howell, M.B., B.Ch., Daniel Everitt, M.D., Angela M. Crook, Ph.D., Carl M. Mendel, M.D., Erica Egizi, M.P.H., Joanna Moreira, B.Sc., Juliano Timm, Ph.D., Timothy D. McHugh, Ph.D., Genevieve H. Wills, M.Sc., Anna Bateson, Ph.D., Robert Hunt, B.Sc., Christo Van Niekerk, M.D., Mengchun Li, M.D., Morounfolu Olugbosi, M.D., and Melvin Spigelman, M.D., for the Nix-TB Trial Team*

Stratified Treatment for Adult TB

medicine

Article OPEN Published: 05 November 2018

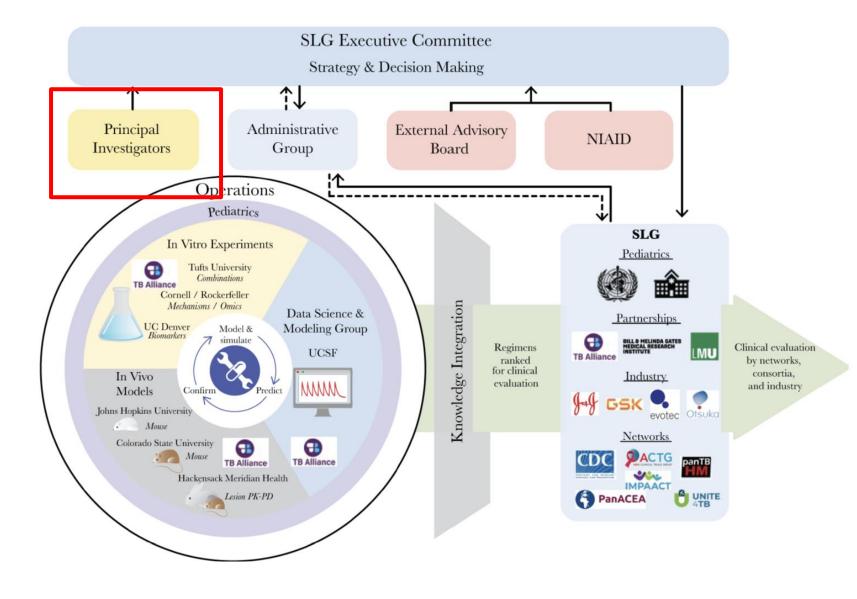
A patient-level pooled analysis of treatment-shortening regimens for drugsusceptible pulmonary tuberculosis

Marjorie Z. Imperial, Payam Nahid, Patrick P. J. Phillips, Geraint R. Davies, Katherine Fielding, Debra Hanna, David Hermann, Robert S. Wallis, John L. Johnson, Christian Lienhardt & Rada M. Savic 🏁

2023 Global New TB Drug Pipeline¹ Updated 7/14/2023

Discovery	Preclinical Development		Clinical Development	
Lead Optimization	Early Stage Development GMP / GLP Tox.	Phase 1	Phase 2 Phase	se 3 Regulatory Market Approvals
Indazole	<u>TBD10 (MK-3854)</u> GSK-839*	<u>TBD09 (MK-7762)</u>	<u>Telacebec* (Q203)</u>	
sulfonamides Diarylthiazoles	<u>CLB-073*</u> OTB-658	GSK-286*	<u> Alpibectir* (BVL-GSK098)</u>	
DprE1 Inhibitors Direct InhA Inhibitors	<u>SPR720*</u>	TBAJ-876	Sanfetrinem	D - 1 11 *
Mtb energy metabolism	MPL-447*	TBAJ-587	Delpazolid	Bedaquiline*
Gyrase Inhibitors	JSF-3285*	TBI-223	Sutezolid	Delamanid*
Arylsulfonamides Inhibitors of MmpL3,	CPZEN-45*	Macozinone*	Sudapyridine (WX-081)	Pretomanid*
Translocase-1, ClpC1, ClpP1P2, PKS13, F-ATP	NTB-3119*	(PBTZ-169)	BTZ-043*	
synthase, RNAP Oxazolidinones	MBX-4888A (1810)*			
<u>DnaE1 / Nargenicin</u> analogs	FNDR-10045*, FNDR-20364*		TBA-7371*	<u>Underline</u> = updates
New chemical class. Known chemic	al classes for any indication are color coded: rifam	-	Quabodepistat (OPC-167832)	since November 2022
	zothiazinone, imidazopyridine amide, beta-lactam. proved, being developed for TB or only conditionall		Ganfeborole (GSK-656*/070)	WORKING GROUP
Showing most advanced stage repor http://www.newtbdrugs.org/pipelin	ted for each. Details for projects listed can be foun <u>ne/clinical</u>		Pyrifazimine (TBI-166)	www.newtbdrugs.org
Ongoing projects without a lead con	npound identified: <u>http://www.newtbdrugs.org/pi</u>	SQ-109*		Updated: July 2023

<u>Pre</u>clinical Design and Clinical Translation of TB Regimens</u> (NIH) funded \$36M investment


- **Goal**: : Unite scientists and stakeholders to build a translational research platform for advancing TB treatment regimens into clinical trials.
- Consortium Composition:
 - Over 30 investigators from more than 20 institutions in 6 countries.
- Expertise Areas:

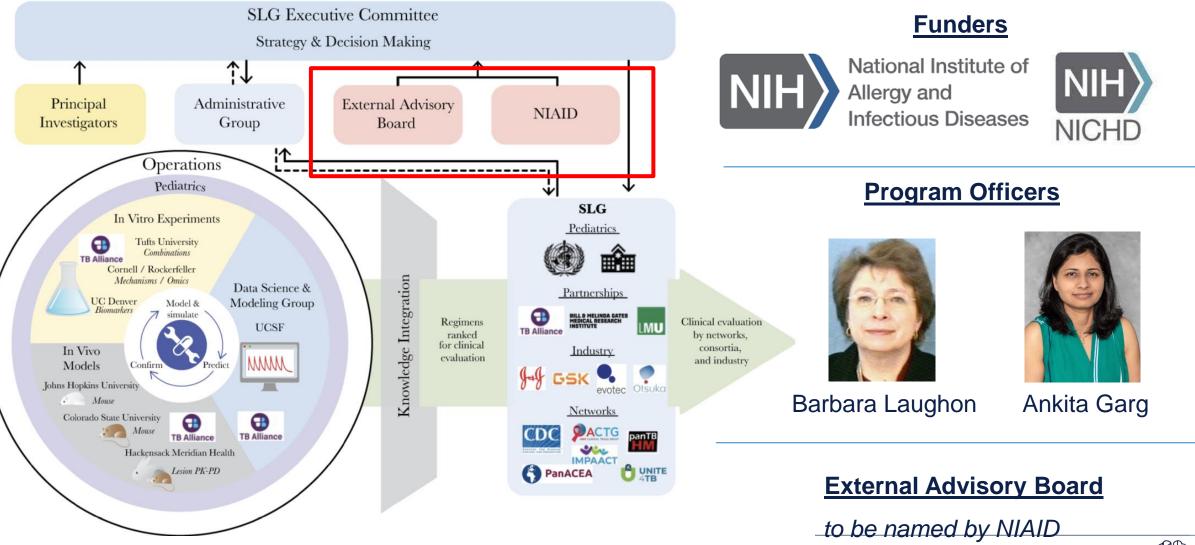
Preclinical research, mechanistic biology, translational and clinical pharmacology, DMPK, biomarkers, data science and modelling, knowledge integration, pediatric TB, and clinical trials.

- Track Record:
 - Successful development of the first 4-month regimen for drug-sensitive TB (HPZM) and the first oral short-course regimen for MDR/XDR-TB (BPaL(M)).

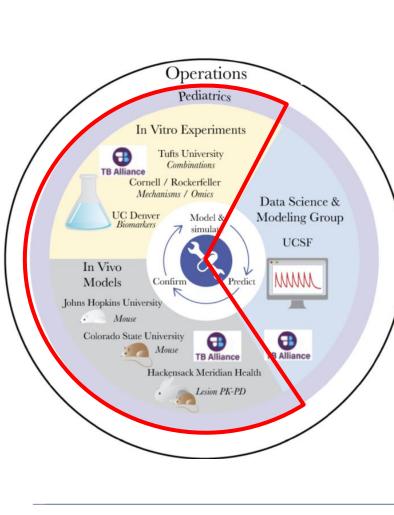
PReDiCTR-TB Consortium: Principal Investigators

Rada Savic, PD/PI UCSF Data Science & Modeling

Eric Nuermberger, co-PI Johns Hopkins University Preclinical, in vivo models

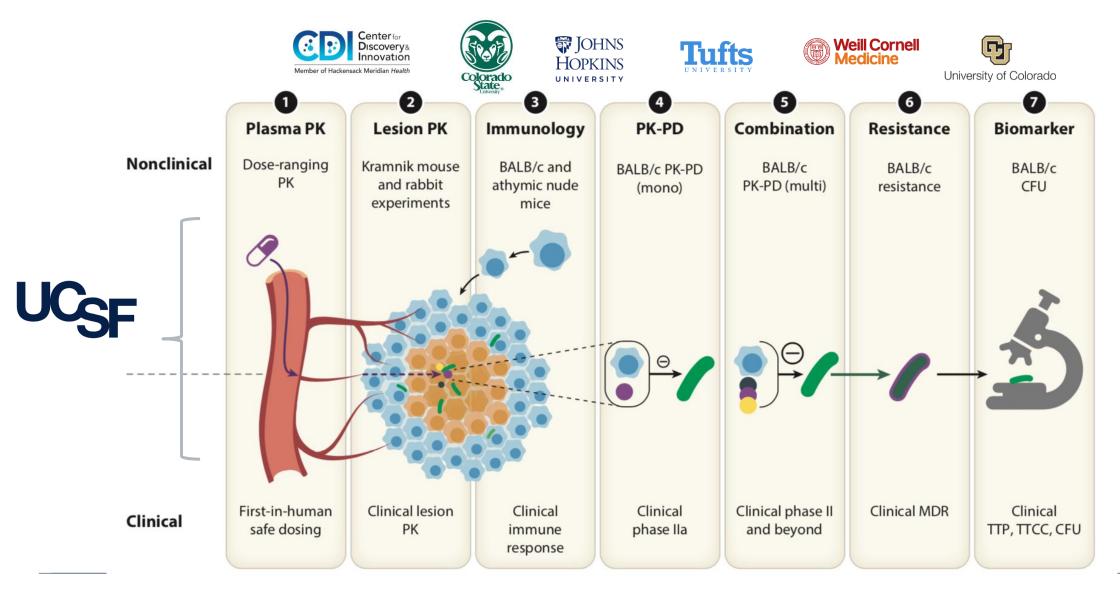

Dirk Schnappinger, co-PI Weill Cornell Preclinical, in vitro models

Kelly Dooley, co-PI Vanderbilt University Medical Ctr Clinical, clinical pharmacology



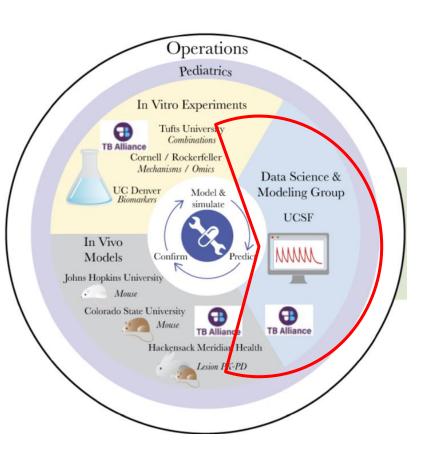
PReDiCTR-TB Consortium: Role of Funder

PReDiCTR-TB Consortium: the Work Preclinical Laboratory Group (PLG)



Overview of tools and platforms for the six Preclinical Laboratories (PL)

PL/lead/co-leads	In vitro PD assays	Other <i>in vitro</i> assays	In vivo PK and PD
JHU-mouse PL Nuermberger *	MIC, MBC, time-kill (replicating, non-replicating, THP-1 macrophage infection); Checkerboard assays Dynamic <i>in vitro</i> PD model		Plasma PK (uninfected, infected); Lesion PK (infected); BALB/c mouse models (subacute, acute, chronic); C3HeB/FeJ mouse model (chronic)
CSU-mouse PL Robertson*	MIC, MBC and rapid sqMBC, time-kill assays; Checkerboard assays, rapid sqMBC (replicating); RAD model (non- replicating)		Plasma PK (uninfected, infected); Lesion PK (infected); C3HeB/FeJ mouse model (chronic); BALB/c ultra-short course model; BALB/c mouse models (subacute, acute, chronic)
DMPK PL Sarathy* Zimmerman	Ex vivo caseum MBC and drug combination killing assay; Caseum surrogate MBC assay; Primary human macrophage infection model	Caseum surrogate binding assay; Macrophage uptake assay; Plasma protein binding for all species; Compound stability in all matrices	Plasma PK (uninfected) Lesion PK (infected) Laser Capture Microdissection Metabolite identification
Omics PL Schnappinger* Ehrt, Rhee, Rock	MIC, MBC; Checkerboard assay; Time to visible colony formation (TTVC)	Chemical genomics Metabolomics	N/A
DiaMOND PL Aldridge*	MIC, MBC, and drug combination potency and interactions (modified checkerboard) in multiple <i>in vitro</i> models (lipid-rich, acidic, dormancy)	N/A	N/A
PhyBM PL Walter* Voskuil	RS ratio; IRDM; MARS		RS ratio


Intelligent Translational Integration

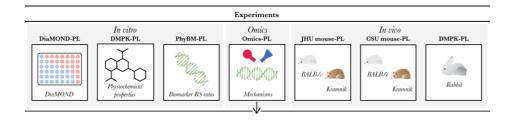
Ernest et al., Annu Rev Pharmacol Toxicol, 2021.

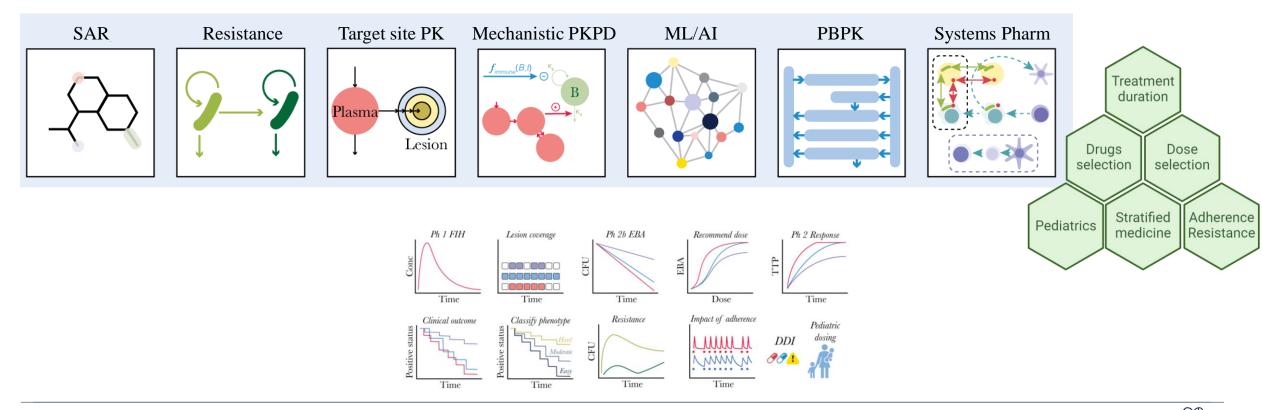
PReDiCTR-TB Consortium Data Science & Modeling Group (DSMG)

Rada Savic DSMG lead

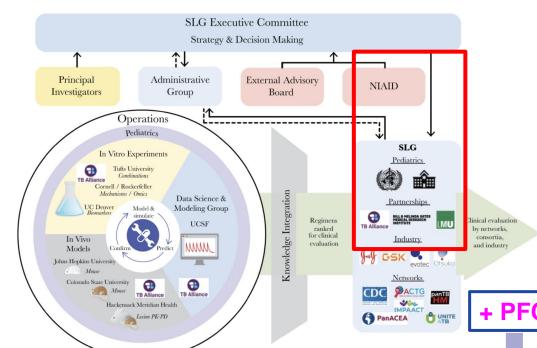
Linda Chaba USCF team lead

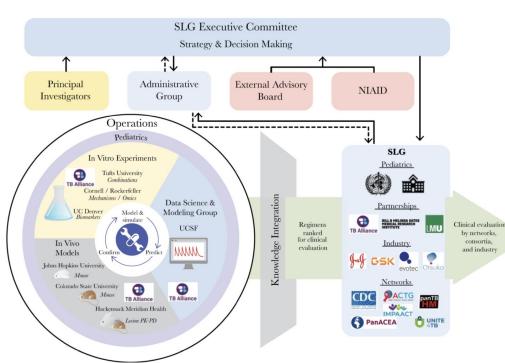
Rob van Wijk Modeling lead


Patrick Phillips Statistics Jackie Ernest Data Science



Belen P. Solans *Pediatrics*

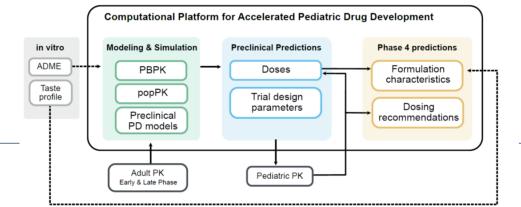

Data Science & Modeling Group (DSMG)


PReDiCTR-TB: Scientific Leadership Group

The Scientific Leadership Group (**SLG**) is comprised of PLG and DSMG leadership, plus representatives from trials networks; drug developers; preclinical groups carrying out multidrug combination studies or developing new tools for TB regimen development. <u>SLG membership will be</u> <u>dynamic</u>, with new members invited to join as new trials networks form and new drug sponsors enter the TB arena.

Organization	Role	Name, Institution
Advancing Clinical	TB Transformative Science Group Chair	Kelly Dooley, VUMC→
Therapeutics Globally (ACTG)		Vidya Mave BJGMC
	A5409/RAD-TB Leadership	Rada Savic & Gustavo Velasquez, UCSF
International Maternal	TB Scientific Committee Chair	Anneke Hesseling,
Pediatric Adolescent AIDS		Stellenbosch University
Clinical Trials (IMPAACT)		
Tuberculosis Trials	Core Science Group Chair	Susan Dorman,
Consortium (TBTC)		Medical University of South Carolina
	Branch Chief, Clinical Research Branch,	
	Division of TB Elimination	Wendy Carr, CDC
Bill & Melinda Gates	DMPK lead, TB Drug Accelerator	Fran Berlioz-Seux
Foundation (BMGF)	BMGF Lead, PAN-TB	Debra Flood
Gates Medical Research	Head of Therapeutics Development	Charles Wells
Institute (GMRI)	Head of Translational Discovery	Jared Silverman
European Accelerator of	Scientific Lead	Stewart Cole, Institut Pasteur
Tuberculosis Regime Project	Modeling, PK-PD lead	Ulrika Simonsson, Uppsala University
(ERA4TB)		
UNITE4TB*	Scientific Coordinator	Michael Hoelscher,
		Ludwig Maximillian University
		(*also asset holder)
GlaxoSmithKline	Head of Global Health Pharma Research	David Barros
	Unit, VP R&D	
Evotec ID	Head of TB Research and Development	Anna Upton
Johnson & Johnson Global	Global Medical Affairs Leader, TB &	Vivian Cox
Health	Leprosy	
Otsuka	Head of Commercial and Clinical	Ramesh Dass
	Development Strategy – TB	
	Global Project leader, TB Project	Masanori Kawasaki
Global Alliance for TB Drug	Senior VP R&D	Eugene Sun
Development (TB Alliance)	Senior VP, Head of Discovery	Nader Fotouhi
Treatment Action Group	TB Project Co-Director	Lindsay McKenna
(TAG)		(UB)

PReDiCTR-TB Consortium: Pediatric Focus Committee

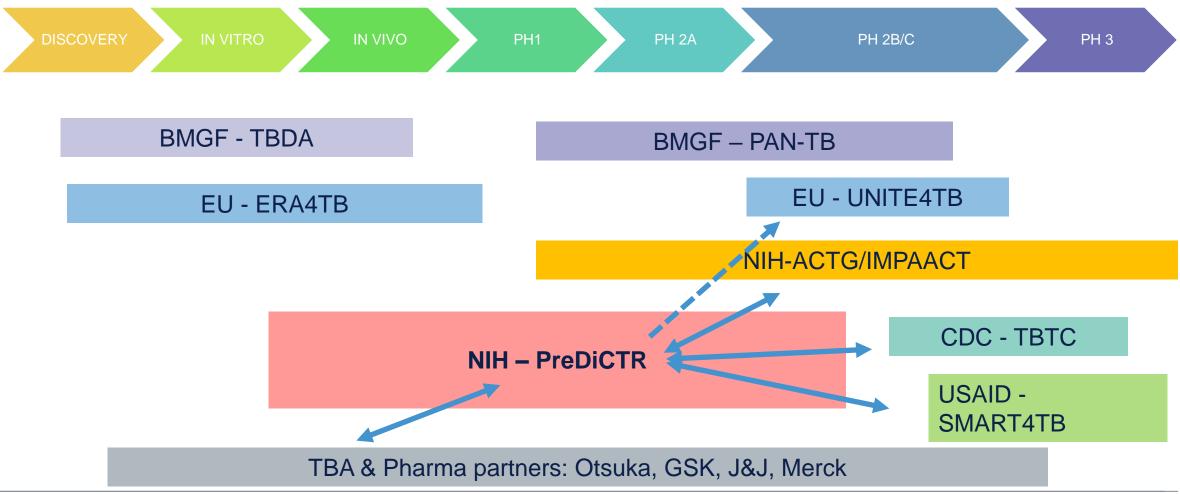


Pediatric Focus Committee (PFC).

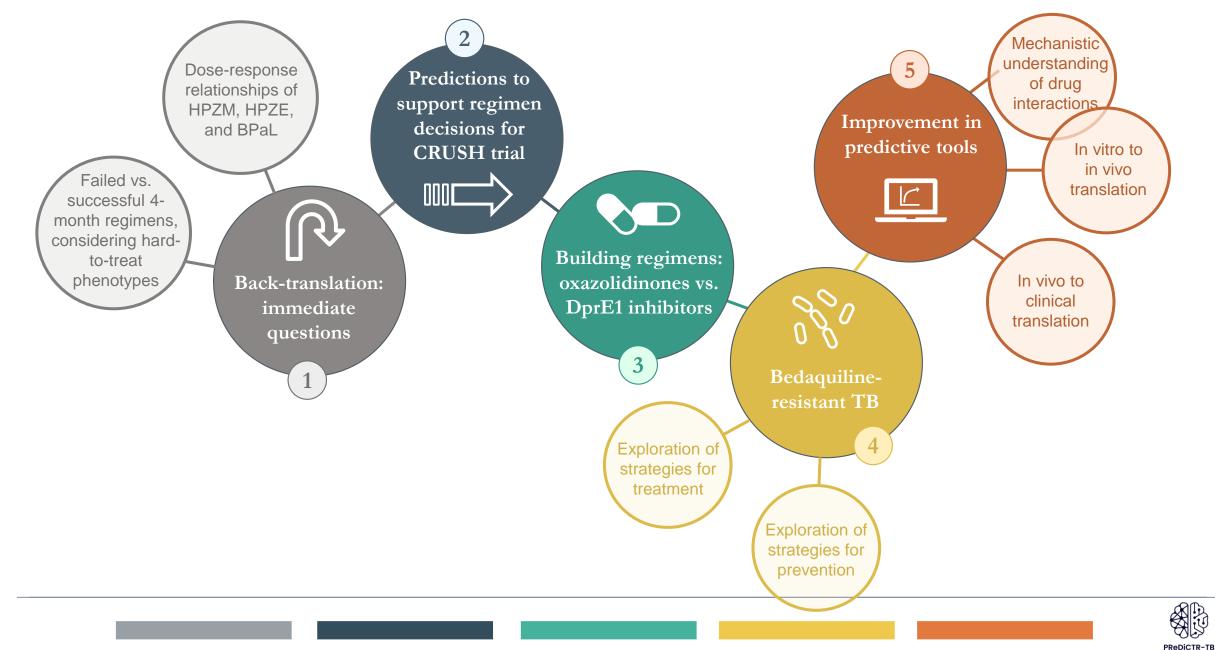
It is critically important that children with TB benefit from advances in TB therapeutics, as early as possible. <u>The PFC is comprised of experts in developmental immunology, biomarkers in pediatric TB, developmental pharmacology and PK modeling for children, first-time-in-pediatric and PK-safety studies in children, and pediatric formulations. All PFC members are also members of the SLG.</u>

Pediatric Focus Committee (PFC)

Name	Institution	Expertise
Anneke Hesseling, Chair	Stellenbosch University	Director, Desmond Tutu TB Center
		Global expert in TB trials in childre IMPAACT
		TBSC lead and TBTC member
Belen Perez Solans	UCSF	Pharmacometrics, modeling, population-level
		simulations, focus on children
Elin Svensson	Uppsala University	Pharmacometrics, applied to dosing for
		children. PAN-TB and UNITE4TB member
Tony Garcia-Prats	University of Wisconsin	IMPAACT TBSC member
		Leader in MDR treatment trials in children
David Lewinsohn	Oregon Health	Immunology of TB infection
	Sciences University	Research Director, Ctr for Global Child Health
Deven le reneth		Diamarkana /diamaatina in shildhaad TD
Devan Jaganath	UCSF	Biomarkers/diagnostics in childhood TB
Lindsay McKenna	Treatment Action Group	Global TB CAB coordinator, advisor to TBTC's
		CRAG, scientific committee of IMPAACT,
		CHEETA Task Force (GAP-f supported)

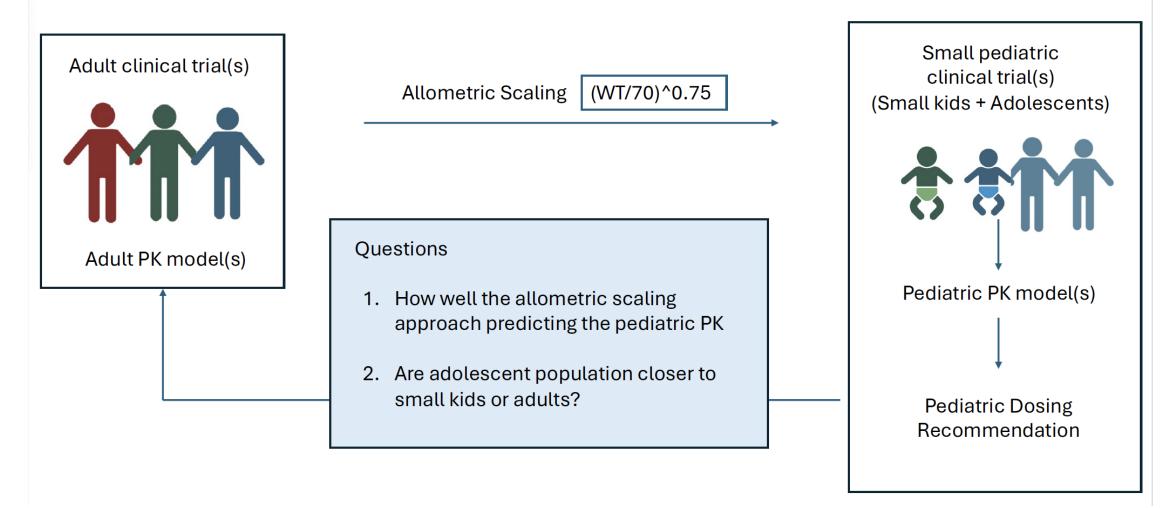


<u>PreDiCTR</u> as it compares with other Consortia



<u>PreDiCTR</u> operates in a unique space Intersection with Clinical Development

Year 1 Themes/ Work Plan


Pediatrics

11/20/2024

Current approach to Pediatric Drug Development

Current Strategy for Pediatric Dosing Recommendation

Children deserve to have their own drug development path Disease is not the same in children and adults

Adult data from MDR-TB IPD MA in adults (n*=7750) Pediatric data from MDR-TB IPD MA in children aged 0-19 years (n*=20395)

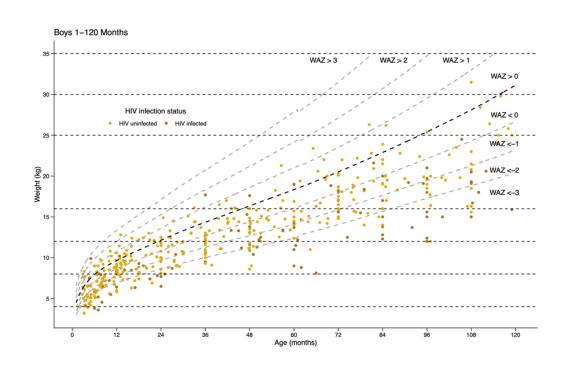
Proportion of treatment success	-		
76 %			
82 %		Pediatric Population	Proportion of treatment success
		< 5 years	94 %
		5-<10 years	90%
		10-<15 years	84%
		15-19 years	80%
	treatment success 76 %	treatment success 76 %	treatment success Pediatric 76 % Pediatric 82 % Pediatric < 5 years

New Regimens – Duration in a mouse model

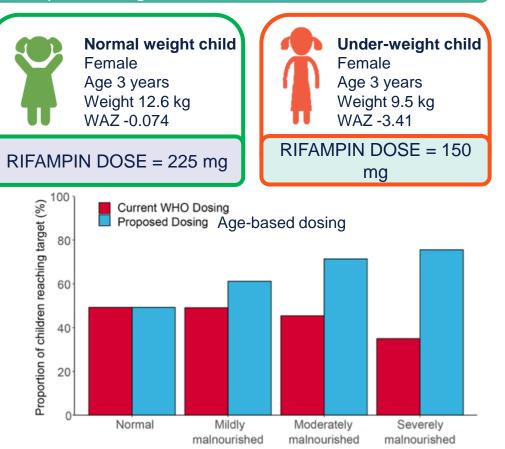
T95 (92.5%-97.5%)

S8ZMU		51 (44.0- 57.0)
S8ZMRb		55 (50.0- 61.5)
BZMU	→→→	66 (62.0- 71.5)
S8PaMU	⊢ →→I	68 (63.0- 72.5)
S8ZMD	⊢−→−− 1	69 (62.0- 75.5)
BZMRb		71 (65.0- 77.0)
S8PaMRb	⊢	72 (65.0- 80.0)
S8PaMA	⊢ →→→	76 (68.0- 85.5)
BPaMU	⊢ ⊷−1	83 (80.0- 87.5)
BZMD	⊢ →→-1	84 (80.0- 90.0)
S8PaMO	┝━━╋━━┥	86 (80.0- 91.5)
BPaMRb	⊢	88 (80.0- 95.5)
BPaMA	F I	92 (84.0-101.5)
BPaMO	F	101 (96.0-106.5)
HRZE		153 (150.0-157.5)
	56 84 112 T95 (days)	140 168

B: bedaquiline D: delamanid E: ethambutol H: isoniazid M: moxifloxacin O: quabodepistat P: rifapentine Pa: pretomanid R: rifampicin Rb: rifabutin S8: TBAJ876 U: sutezolid Z: pyrazinamide



Weight-based dosing guidelines are inappropriate


Current guidelines recommend flat weight-band dosing strategy

These weight-based dosing guidelines are leaving malnourished children vulnerable to under-dosing

43% of 133 302 children <5 years who were treated for tuberculosis in 2017 were underdosed with WHO dosing. Only 47% of children would reach the rifampicin exposure target

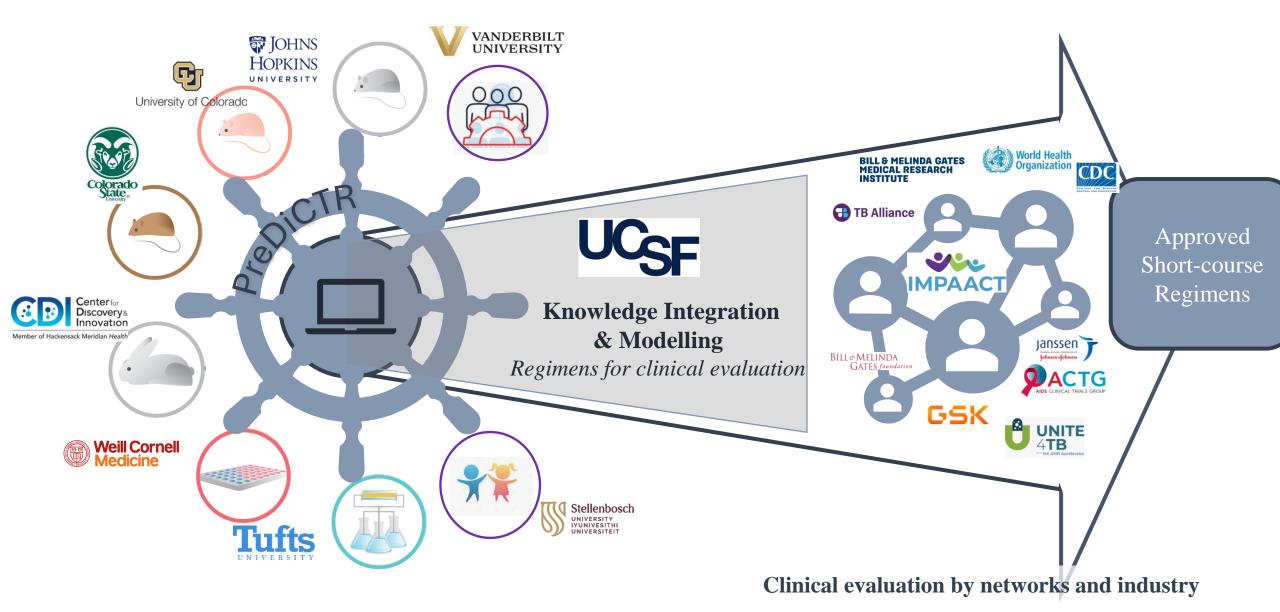
Better alternatives are dosing algorithms by age or expected weight

Vision: Accelerate, de-risk and chose the right strategy Data integration, synthesis and modeling

Acceleration

- Ultra short course mouse study
- In vitro-in vivo integration
- Al-powered drug combination
 predictions
- Human Dose prediction
- Surpassing Ph 2A EBA trial
- Phase 2A+ Combo Platforms leading to Phase 3

De-Risking


- Better defined dose range early on
- Drug penetration assessment
- Prediction of clinical duration early on
- Targeted patient phenotype

Strategy

- Define competitive advantage
- Chose the right experiments/path

NIHPreDiCTR ConsortiumPreclinical Design and Clinical Translation of TB Regimens

