# The TB Vaccine Landscape: Accelerating Impact

Lisa Marie Cranmer, MD, MPH Associate Professor Pediatric Infectious Disease, Emory University September 24, 2024

# IMPAACT

International Maternal Pediatric Adolescent AIDS Clinical Trials Network

ANNUAL MEETING 2024



### **Describe the current TB vaccine landscape**



#### **Define challenges of TB vaccine development**



#### **Design strategically to accelerate impact**



### The first >100 years of TB vaccination



# Ongoing TB mortality despite BCG

>1 million deaths/year





Global Tuberculosis Report 2023; Sohby Int J. Obs Gyn 2017

## Introduction of new TB vaccine candidates



## **TB** Vaccine Indications and Endpoints

Prophylactic

#### Post-exposure

Mtb infection (IGRA+)

Household contacts

Therapeutic

No Mtb infection (IGRA-)



AMA

• TB disease



Prevent Mtb infection (POI)

Prevent TB disease (POD) Prevent TB Disease (PoD)

Shorten Treatment (Rx) Prevent Recurrence (PoR)



### WHO TB Vaccine Target Populations

### PRIORITY



WHO Evidence Considerations for Vaccine Policy Development for Tuberculosis Vaccines Intended for Adults and Adolescents



Safe, effective (>50% POD) and affordable



### TB Vaccine Candidates in Late-Stage Development





- M72/AS01<sub>E</sub>
- ID93+GLA-SE



- BCG Revax
- VPM1002
- MTBVAC







- M72: Two Mtb antigens
  - -Mtb39a
  - Mtb 32a
- Adjuvant AS01<sub>E</sub>
  - Monophosphoryl Lipid A (MPL)
  - **Q**uillaja **s**aponaria (QS-21)
- 2 doses, 1 month apart







# M72/AS01<sub>E</sub> prevents TB in IGRA+ adults

- Phase 2b, Africa
- Age 18-50 years, HIV-, IGRA+
- N=3,575
- Phase 3, Africa + SE Asia
- Age. 15-44 years, HIV-/+, IGRA-/+
- N=26,000
- 2024-2028 (Gates) (NCT06062238)



Van der Meeren NEJM 2018; Tait NEJM 2019



## ID93 and GLA-SE

#### ID93: Four Mtb antigens

-Virulence (3) Rv3619, Rv3620, Rv2608

– Latency (1) Rv1813

#### Synthetic Adjuvant

- Glucopyranosyl Lipid A Stable Emulsion
- TLR4 agonist in oil-in-water emulsion





Bertholet Sci Trans Med 2010; Misquith Colloids and Surfaces 2014

Α



### ID93/GLA-SE is safe and elicits robust CD4 immunogenicity after 2 doses

- Phase 1, South Africa
- Age 18-50 years, HIV- ,IGRA-/+
- N=66
- 3 IM doses (d0, d28, d112)
- Higher AE frequency IGRA+
  - Injection site pain 100% vs 60%, p=0..02
  - Mild flu-like symptoms
- Phase 2b/3, SE Asia
- Age. 14-45 years, HIV-, IGRA-/+
- N=>9,000
- 2024-2029 (?) (Quratis)



- Cohort 1: 10ug/2ug (IGRA-)
- Cohort 2: 2ug/2ug
- Cohort 3: 10ug/2ug
- Cohort 4: 10ug/5ug



Penn-Nicholson Lancet Resp Med 2018

### BCG Revaccination prevents sustained Mtb infection

#### ORIGINAL ARTICLE

Prevention of *M. tuberculosis* Infection with H4:IC31 Vaccine or BCG Revaccination

- Phase 2 HIV-, IGRA- South Africa
- Age 12-17 years

13

• N=330/arm (Aeras)



#### 

#### **Tuberculosis: The Host-Pathogen Interface**

March 24-27, 2024 | Keystone Resort, Keystone, CO, United States Scientific Organizers: Marcel A. Behr, Lalita Ramakrishnan and Kevin B. Urdahl

- Phase 2b HIV-, IGRA- South Africa
- Age 10-18 years
- N=900/arm
- 2019-2025 (Gates MRI)

BCG revaccination did not prevent sustained QFT conversion compared to placebo over 42 weeks follow-up (7.1 vs 6.9%)

Nemes NEJM 2018; Schmidt Keystone Symposia 2024



### M. bovis whole cell vaccines: a story to unfold



### POI ≠ POD

- Phase 3 POD, India
- Household contacts, age 6-18y
- N=9,200 (BCG vs TPT)
- 2024-2027 (SII)

16

NCT05330884

- Programmatic Roll-out, India
- High-risk individuals
  - *>50 years*
  - Underweight
  - Diabetes
  - EtOH/smoking

• February 2024 - present (NIRT)





8-10 October 2024 Rio de Janeiro, Brazil

Driving innovation from discovery to access

Phase 2b POR, India Adults 18-65y N=2,000 (VPM1002 vs Placebo) 2019 – 2023 (SII)

NCT03152903

Phase 3 POD, India Household contacts, age 6-99y N= 12,721 (VPM1002 vs MIP) 2019 – 2023 (ICMR)

CTRI/2019/01/017026





- MTBVAC retains ~25% Mtb T cell epitopes absent in BCG
- Preclinical mouse studies: survival in SCID; ↑ protection vs BCG





### MTBVAC safe and elicits high CD4 responses in infants

- Phase I South African infants (N=36)
- No related SAEs

18

- Similar reactogenicity MTBVAC vs BCG
- Higher CD4 responses up to 1-year MTBVAC vs BCG
- IGRA conversion in MTBVAC recipients
  - dose-related [7/9 (78%) high-dose] 2.5 x 10<sup>5</sup> CFU
  - Phase 3 POD
  - N=7120 infants, South Africa
  - 2022 2029 (Biofabri) (NCT04975178)
  - Phase 2b POD
  - 14-45 years HIV-, IGRA+
  - N= 4,300
  - 2025-2029 (Biofabri/IAVI)



Tameris & Mearns et al, Lancet Respir Med 2019





#### **Describe the current TB vaccine landscape**

**Define challenges of TB vaccine development** 



#### **Design strategically to accelerate impact**



### Prolonged time to endpoints





### Immune correlates of protection unknown

#### **EXPERT INSIGHT**

#### The quest for vaccine-induced immune correlates of protection against tuberculosis

Elisa Nemes, Andrew Fiore-Gartland, Cesar Boggiano, Margherita Coccia, Patricia D'Souza, Peter Gilbert, Ann Ginsberg, Ollivier Hyrien, Dominick Laddy, Karen Makar, M. Juliana McElrath, Lakshmi Ramachandra, Alexander C. Schmidt, Solmaz Shotorbani, Justine Sunshine, Georgia Tomaras, Wen-Han Yu, Thomas J. Scriba, Nicole Frahm; the BCG Correlates PIs Study Team & the M72 Correlates PIs Study Team



#### *Mtb infection:* • BCG REVAX

TB disease:

• M72/ASO1<sub>E</sub> 2b

Biobanking samples is critical for future immune correlate discovery and immunobridging to special populations



Prior immunity modifies vaccine response; differential effect by vaccine type



22



Study Day

Whole cell vaccines

 $\uparrow$  NTM exposure, age  $\downarrow$ VE



**Overall VE 12% (-2-24%)** +Prior BCG: Age <11 Salvador (\ NTM) POD VE 33% (3-54%) No prior BCG: POD VE 25% (3-43%)

Baretto Vaccine 2011; Pereira Lancet ID 2012

Penn-Nicholson Vaccine 2015

### Global TB vaccine funding is inadequate

TB Vaccination is Essential to End TB

23





AIDS Clinical Trials Network

Young and Dye Cell 2006; TAG and StopTB Partnership Global Tuberculosis Funding Trends 2022



#### **Describe the current TB vaccine landscape**



#### **Define challenges of TB vaccine development**



### **Design strategically to accelerate impact**



## Apply Lessons Learned from COVID: Streamline



25

| FIO1 | <b>OPERATION WARP SPEED</b><br>ACCELERATED VACCINE PROCESS | R&I |
|------|------------------------------------------------------------|-----|
|      |                                                            |     |

D + Preclinical Trials Vaccine Candidate/s Identified ise I Clinical Trials

Phase II Clinical Trials Phase III Clinical Trials

Manufacturing Distribution



#### Adaptive clinical trial design

- Overlapping phases
- Phase 1-3 single protocol (Pfizer)
- Flexibility: ongoing case detections post unblinding



### Eliminate inequities in evidence

INSUFFICIENT DATA

26

Age 12-14 Pre-adolescents PLWHIV

**EXCLUDED** from all current TB vaccine trials



Pregnant Lactating





### Align Evidence with Public Health Impact

27



Knight PNAS 2014

ional Maternal Pediatric Adole AIDS Clinical Trials Network





Pre-licensure phase 2 studies are critical to avoid delayed vaccine roll-out in target populations

29



rnational Maternal Pediatric Adolescent AIDS Clinical Trials Network

# Risk Tolerance: Pre- vs Post-Licensure inclusion of special populations









- Adaptive clinical trial design
- Eliminate inequity in evidence
- Align evidence with public health impact



### Thank You

34



#### The entire IMPAACT2035/HVTN604 Study Team



Photo credit: PATH









National Institute of Allergy and Infectious Diseases

Eunice Kennedy Shriver

K23AI143479

K12HD000850





Internatic

HIV VACCINE trials network

International Maternal Pediatric Adolescent AIDS Clinical Trials Network



PeRSEVERE Grant

🧑 Georgia CTSA

UL1-TR002378



DORIS DUKE CHARITABLE FOUNDATION escent

# Additional Slides



| Table 1: Current Phase 2b/3 Whole Cell TB Vaccine Trials                                        |         |         |                     |        |                       |  |  |
|-------------------------------------------------------------------------------------------------|---------|---------|---------------------|--------|-----------------------|--|--|
| Trial/Sponsor                                                                                   | Phase/  | Other   | Study Population    | Ν      | Timeline              |  |  |
|                                                                                                 | Outcome | arm(s)  |                     |        |                       |  |  |
| MTBVAC                                                                                          |         |         |                     |        |                       |  |  |
| NCT04975178                                                                                     | 3       | BCG     | Newborns            | 7,120  | 09/2022 - 09/2029     |  |  |
| Biofabri/IAVI                                                                                   | POD     |         | HIV-/HIV-exposed    |        |                       |  |  |
|                                                                                                 |         |         | South Africa        |        |                       |  |  |
| NCT06272812                                                                                     | 2b      | Placebo | 14-45 years         | 4,300  | 09/2024 - 03/2028     |  |  |
| Biofabri/IAVI                                                                                   | POD     |         | *HIV–, IGRA+        |        |                       |  |  |
|                                                                                                 |         |         | South Africa, TBD   |        |                       |  |  |
| VPM1002                                                                                         | _       | -       |                     |        |                       |  |  |
| NCT03152903                                                                                     | 2b      | Placebo | 18-65 years         | 2,000  | 02/2017 - 02/2024     |  |  |
| SII                                                                                             | POR     |         | HIV–, <u>Hx</u> TB  |        | Results expected 2024 |  |  |
| CTRI/2019/01/01                                                                                 | 3       | MIP     | HHC age >6 years    | 12,721 | 01/2019 - 2023        |  |  |
| 7026                                                                                            | POD     |         | HIV-                |        | Results expected 2024 |  |  |
| ICMR                                                                                            |         |         | India               |        |                       |  |  |
| NCT04351685                                                                                     | 3       | BCG     | Newborns            | 6,940  | 11/2020 - 11/2025     |  |  |
| SII                                                                                             | POI     |         | HIV-/HIV-exposed    |        | [*2028?]              |  |  |
|                                                                                                 |         |         | Multi-center Africa |        |                       |  |  |
| BCG                                                                                             |         |         |                     |        |                       |  |  |
| NCT05330884                                                                                     | 3       | TPT     | HHC age 6-18 yrs    | 9,200  | 07/2024 - 06/2027     |  |  |
| ICMR                                                                                            | POD     |         | HIV- India          |        |                       |  |  |
|                                                                                                 |         |         |                     |        |                       |  |  |
| POD= Prevention of Disease; POI=Prevention of Infection; POR=Prevention of Recurrence;          |         |         |                     |        |                       |  |  |
| HHC=Household contact; TPT=Tuberculosis preventive therapy; *Need to clarify with trial sponsor |         |         |                     |        |                       |  |  |

J

AIDS Clinical Trials Network

| VPM1002/MIP (3) |
|-----------------|
| 2017 - 2024     |
| 6-99 years      |
| India, HIV- HHC |
| N=12,721        |
| (SII)           |
|                 |

| (SII)        |                | M72     | /ASO1E (3)   |  | ID93/GLA-SE (2b/3) |
|--------------|----------------|---------|--------------|--|--------------------|
| GamTBVac (3) |                | 20      | 2024 – 2028  |  | 2025 – 2029 (?)    |
| 2022 - 2025  |                | 15      | 15-44 years  |  | 14-45 years        |
| 18-45 years  |                | SS      | SSA, SE Asia |  | SE Asia            |
| Russia, HIV- |                | Ν       | N=26,000     |  | N=9,000            |
| N=7,180      |                |         | (Gates)      |  | (Quratis)          |
|              | BCG Revacc (3) |         |              |  | MTBVAC (2b)        |
|              | 202            | 4-2027  |              |  | 2025 - 2029        |
|              | 6-18           | 3 years |              |  | 14-45 years        |
|              | India, HIV-    |         |              |  | SA, HIV-, IGRA+    |
|              | N=             | 9,200   | 0            |  | N=4,300            |
|              | (ICMR)         |         |              |  | (Biofabri/IAVI)    |

### Safety: TB Vaccination during Lactation



### No theoretical safety concerns

- Case report of intravesicular BCG during lactation, no AEs Barbur Immunother 2022
- Preclinical studies demonstrate safety of BCG in lactation Williams Heliyon 2022
- Infants immunized with BCG at birth
- No licensed vaccines (live/inactivated) contraindicated during lactation\*

\*Except YFV



### Enhance Infant Mucosal Immunity (?)

- Mtb-specific IgA
  - Inhibit epithelial cell Mtb infection in vitro
  - Protect from Mtb infection + TB disease in NHP

Zimmerman EMBO Mol Med. 2016 • Dijkman Nat Med 2019

#### Cranmer (PI) K23AI143479 BM Humoral Mtb CoP in progress

17 NovTBS-EP05-08 Breast milk is enriched with functional anti-mycobacterial antibodies that decline over time10:05Lisa Marie Cranmer05m • Salle Maillot 5