# Frequency & Mechanisms of DTG Resistance: Lessons from P1093 and IMPAACT 2010/VESTED

Ceejay Boyce, PhD

Frenkel Laboratory | Seattle Children's Research Institute

IMPAACT Therapeutics Scientific Committee Meeting 23 October 2023

# **Study Objectives (NWCS #623)**

Among women and children living with HIV-1 non-subtype B on dolutegravir (**DTG**)-based ART, we aimed to:

- Assess the impact of pretreatment drug resistance (PDR) on the efficacy of DTG-ART
- Describe the emergence of DTG resistance mutations among individuals with failure
- Evaluate concordance between genotypic and phenotypic DTG resistance

# **Study Populations**

### **IMPAACT P1093**

**Parent Study:** Phase 2/3 – dose-finding, safety, and PK study of dolutegravir (**DTG**) in children

**Regimen:** DTG + optimized background therapy (**OBT**)

### **Cohort Characteristics**

- INSTI-naïve (n=181; 100%)
- 4wks-2yo = ART <4w or failed ART (n=54; 100%)</li>
- 2yo-17yo = failed ART (n=127; 100%)

**Locations:** Botswana, Kenya, South Africa, Tanzania, Thailand, Uganda, USA, Zimbabwe

HIV subtypes: A, B, C, D, AE, F, AG

**2º Study Design:** Cohort study evaluating correlates of virologic failure & DTG-resistance

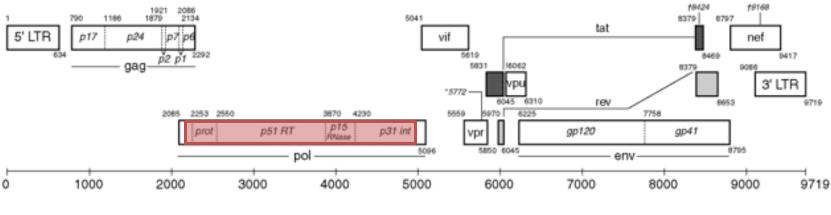
### **IMPAACT 2010/VESTED**

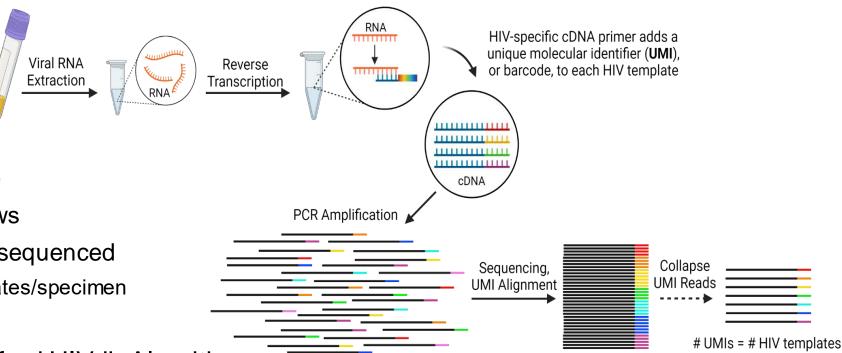
**Parent Study:** Phase 3 – randomized-controlled safety & efficacy trial of DTG (vs. efavirenz)-based ART in pregnant and breastfeeding women

**Regimens:** DTG + emtricitabine + tenofovir (**TDF/TAF**)

### **Cohort Characteristics**

- Pregnant, 14-28 weeks gestation
- ART- & INSTI-naïve at study screening
- N=432 (1/432 took DTG prior to study entry)

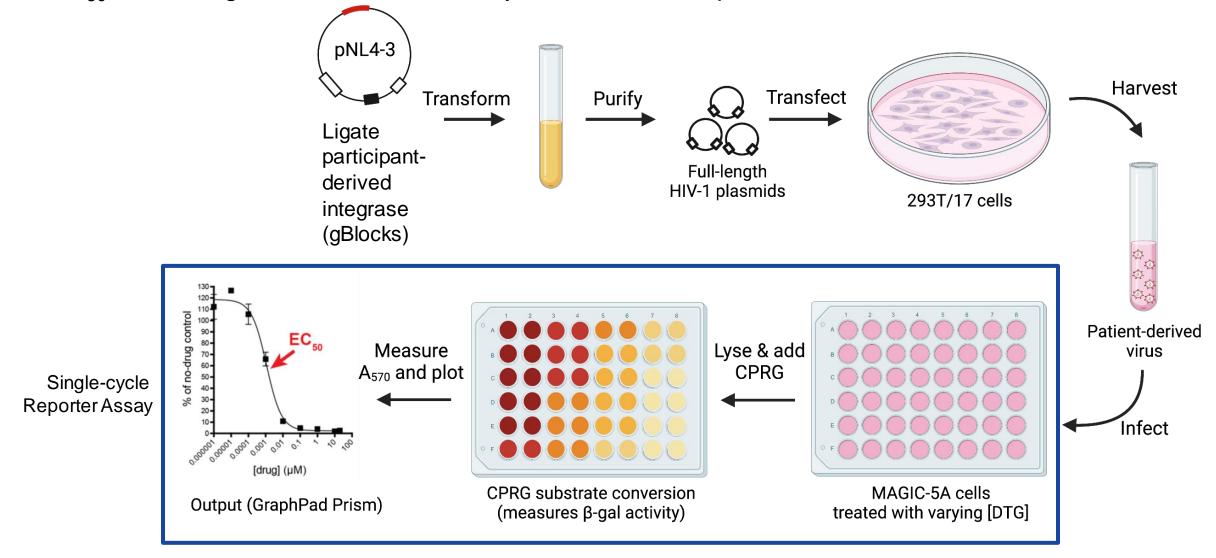

**Locations:** Botswana, Brazil, India, South Africa, Tanzania, Thailand, Uganda, USA, Zimbabwe


HIV subtypes: A, B, C, D, AE

**2º Study Design:** Case-control study to determine correlates of virologic failure & DTG-resistance

# Approach: Genotypic resistance by PacBio sequencing

- Specimens tested
  - Study screen or enrollment
  - Longitudinal plasma with
    - P1093 = HIV RNA ≥400c/mL
    - 2010 = HIV RNA ≥200c/mL
- HIV pol PacBio
  - Region: PR 19aa IN 270aa
- cDNA primer incorporates a unique molecular identifier (UMI)
  - UMI "erases" PCR errors & allows quantification of viral templates sequenced
    - Aimed to sequence ≥100 templates/specimen



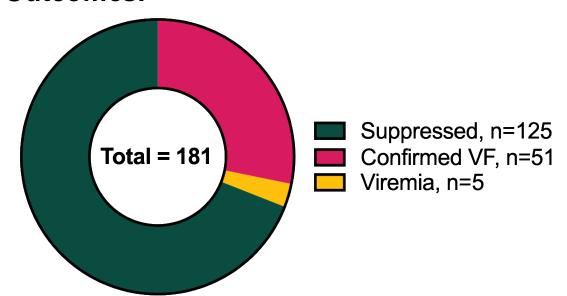



Bioinformatic pipeline uses Stanford HIVdb Algorithm

## Approach: Phenotypic resistance by single-cycle reporter assay

- DTG 50%-effective concentration (**EC**<sub>50</sub>) using gBlocks with participants' HIV DR sequences
- EC<sub>50</sub> fold-change between screen/entry and viremic timepoints




### Frequency of viremia / virologic failure (VF) on DTG-based ART

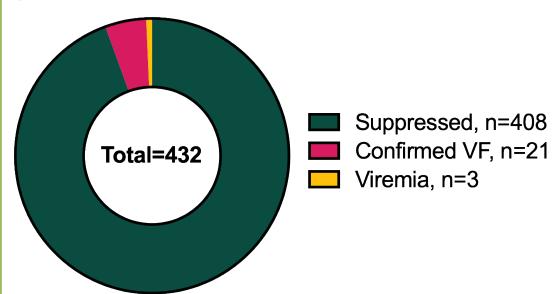
### **IMPAACT P1093**

### Regimen:

DTG + optimized background therapy (**OBT**)

### **Outcomes:**

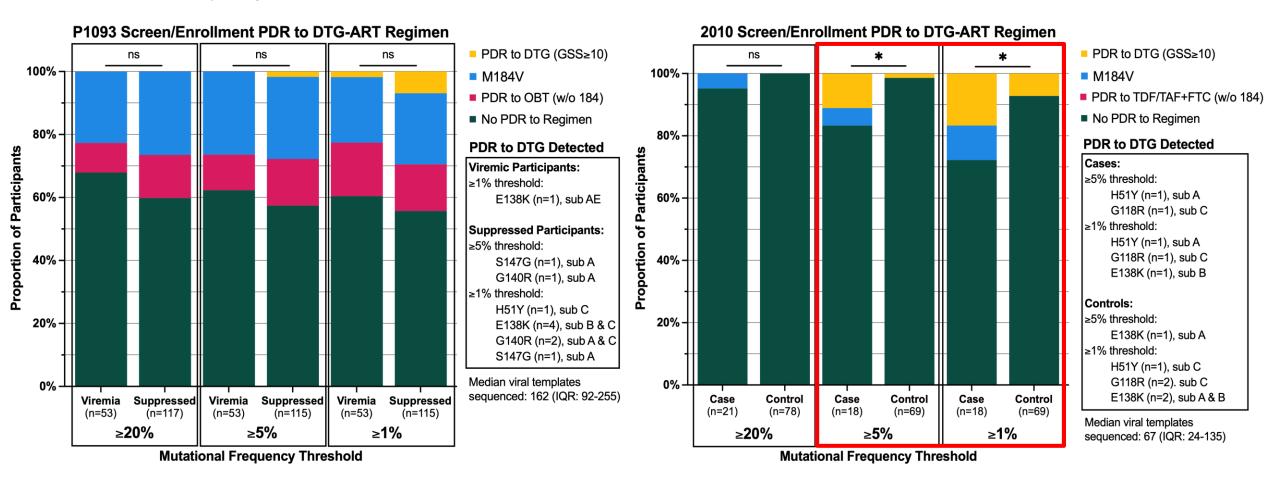



- 56/181 (**30.9%**)
  - 51 confirmed VF = ≥400c/mL x 2 sequentially
  - 5 viremias =  $\geq$ 400c/mL (subsequent <400c/mL) x  $\geq$ 2
  - Median viremia 5,536c/mL (IQR: 1,645-36,316c/mL)

### **IMPAACT 2010**

### Regimen:

DTG + TDF/TAF + emtricitabine


### **Outcomes:**



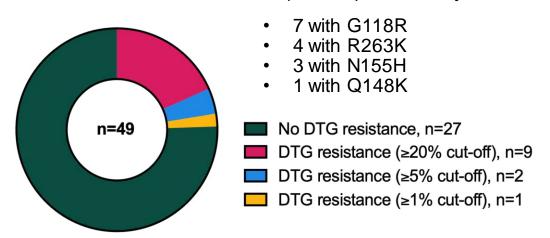
- 24/432 (**5.6%**)
  - 21 confirmed VF = ≥200c/mL x 2 sequentially
  - 3 viremias = ≥200c/mL at final study visit
  - Median viremia 9,884c/mL (IQR: 1,152-48,592c/mL)

### PDR was not associated with VF / viremia in either cohort

- Screen/enrollment genotypes were successfully derived from 269/292 (92%) participants
  - 170/181 in P1093 (168 PacBio, 2 Sanger)
  - 99/111 in 2010 (87 PacBio, 12 Sanger)
- PDR at screen/enrollment was
  - not associated with VF/viremia in P1093
  - but low frequency PDR was associated with VF/viremia in 2010



### Major DTG-resistance mutations detected in 13 participants at VF/viremia


### **IMPAACT P1093**

### Regimen:

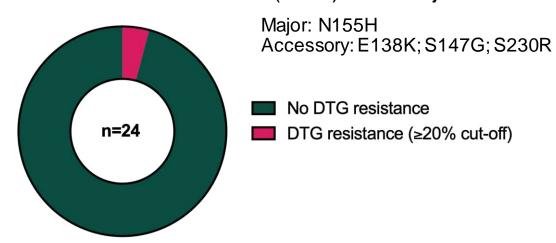
DTG + optimized background therapy (**OBT**)

### **DTG-resistance:**

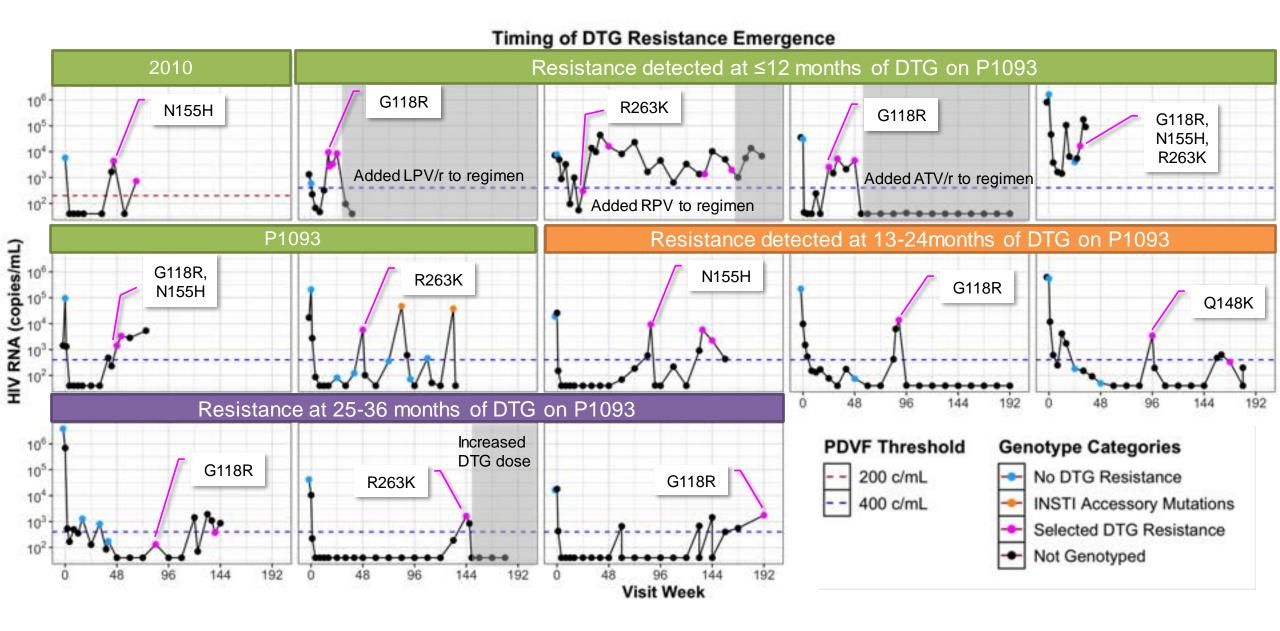
- Longitudinal genotyping = 49/56 with VF/ viremia
  - PacBio n= 117 specimens
  - Sanger n= 18 specimens
- DTG-resistance = 12/49 (**24.5%**) with major mutations



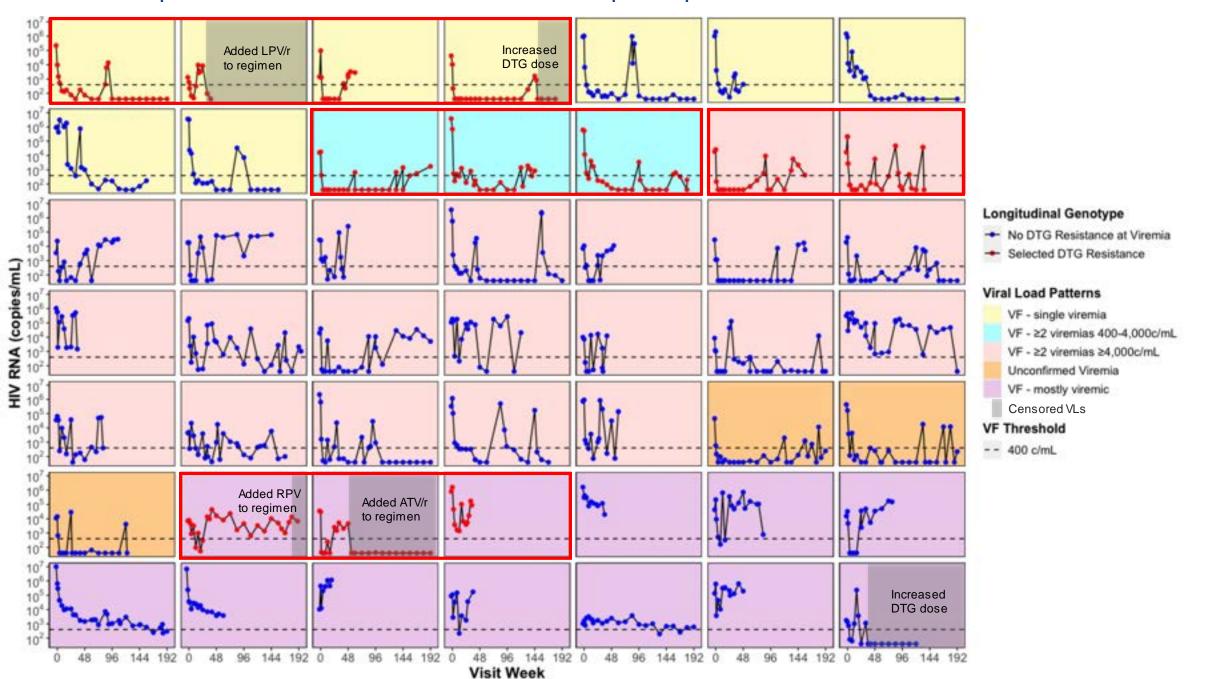
No significant difference in % DTG-resistance among those with TDF vs. ABC/ZDV in OBT: 2/11 (18.2%) vs 10/38 (26.3%); p=0.7


### **IMPAACT 2010**

### Regimen:


DTG + TDF/TAF + emtricitabine

### **DTG-resistance**:


- Longitudinal genotyping = all 24 "cases"
  - PacBio n= 57 specimens
  - Sanger n= 2 specimens
- DTG-resistance =1/24 (4.2%) with major mutations

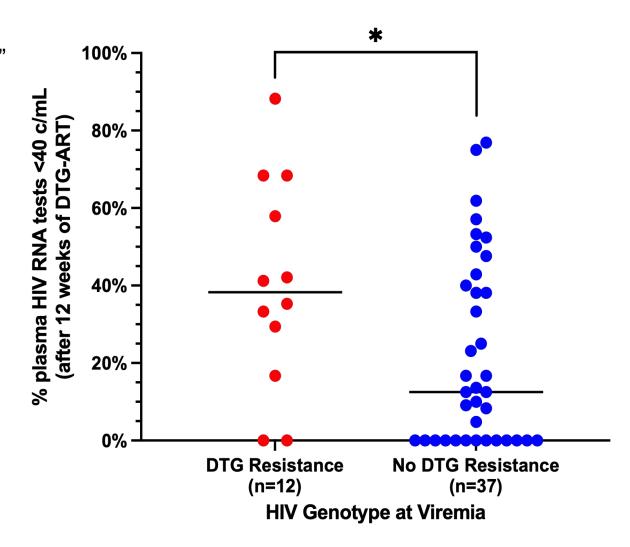


### DTG-resistance selected in year 1 (7/13=53%), 2 (3/6=50%) & 3 (3/3=100%)



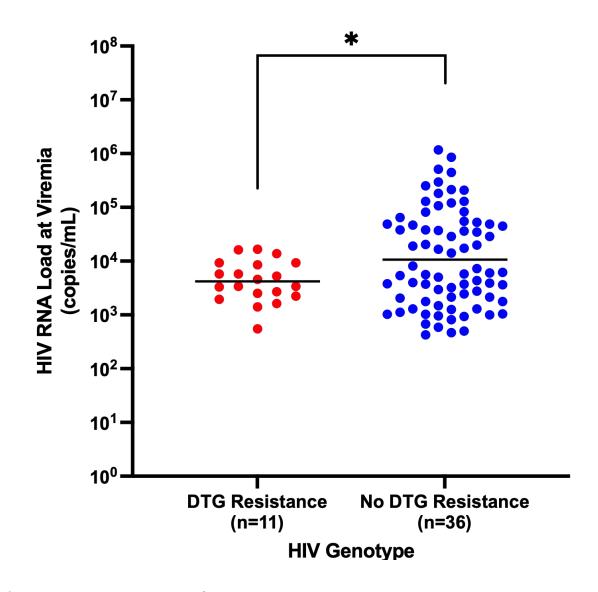
### Patterns of plasma HIV RNA ≥ 400c/mL in P1093 participants who did / did not select DTG-resistance




### Pattern of plasma HIV RNA appears associated with DTG-resistance in P1093

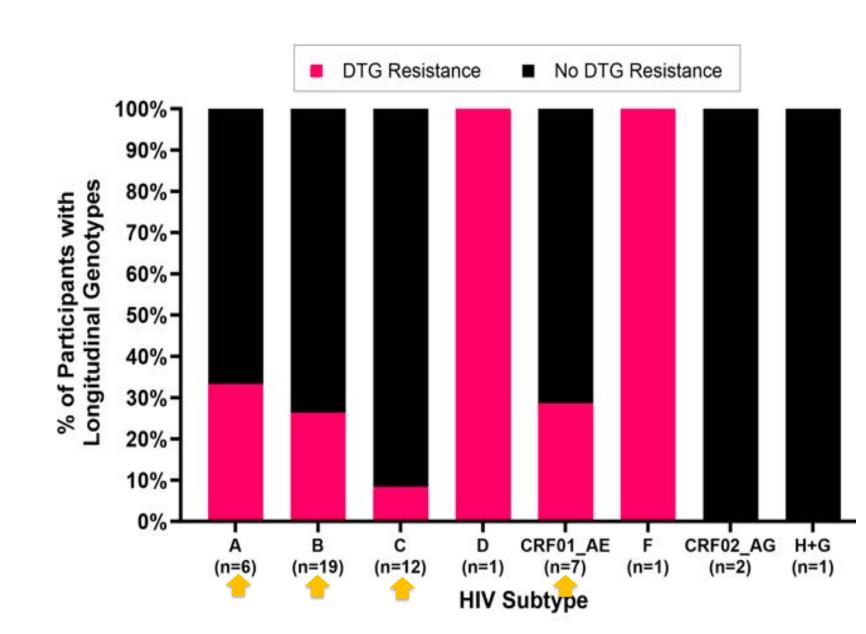
### Compared

- Proportion plasma HIV RNA tests "undetectable" (<40c/mL) over study period</li>
- Participants with vs without DTG-resistance (n=49)
- Generalized estimating equations (GEE) was used to account for repeated measures


### Found

- DTG-resistance associated with increased suppression (p=0.043)
- OR 2.15, 95% CI 1.02-4.52
- Suggests that intermittent adherence with low-level viremia allows selection of DTGassociated mutations




### DTG-resistance associated with lower HIV RNA at viremia in P1093

- Compared
  - Plasma HIV RNA at viremic timepoints we genotyped
  - Participants with vs without DTG-resistance (n=47\*)
  - GEE was used to account for repeated measures
- Found
  - Those with DTG-resistance had lower viral loads when viremic than those who did not have DTGresistance (p=0.0139)
    - HIV RNA 0.38 log10 lower (95% CI 0.08, 0.69)
    - Mean viremia 4,169c/mL vs 10,233c/mL
- Supports hypothesis that low-level viremia allows selection of DTG-associated mutations
- Suggests DTG-associated mutations may reduce viral replication capacity



### HIV Subtype & DTG Resistance in P1093

- Participants with VF / viremia
  - Compared % with DTGresistance by HIV-1 subtype
- Found
  - Similar rates in subtypes A,
     B, C, CRF01\_AE
  - Too few D, F, CRF02\_AG
- Suggests HIV-1 subtype may not have significant association with selection of DTG-resistance
  - However, need to evaluate additional participants to draw any conclusions



### Concordance observed between genotype & phenotype

- Phenotypic analysis
  - n=13 P1093 participants
    - 9 shown; Major DTG mutations
    - 2 with accessory DTG mutations & 2 wild-type not shown
- Comparison of phenotypes for two most prevalent mutant codons:
  - G118R
  - R263K
  - Median FC (range)
    - G118R= 16.5 (9, 62)
    - R263K=3.7 (2.5, 5)
- Phenotypic DTG-resistance consistently greater with G118R vs R263K

| Country      | Subtype | Weeks of DTG                    | INSTI resistance mutations                                                        | RCa                                | DTG EC <sub>50</sub> (nM) <sup>b</sup>                               | FCc                             |
|--------------|---------|---------------------------------|-----------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|---------------------------------|
| Thailand     | AE      | 0<br>20                         | L74I<br>T66I, L74I, <b>G118R</b>                                                  | 95<br>29                           | 1.7 ± 0.18<br><b>32 ± 10</b> <sup>d</sup>                            | 19                              |
| USA          | В       | 0<br>162                        | none<br>E138T, S147G, <b>R263K</b>                                                | 67<br>55                           | 2.4 ± 0.52<br>12 ± 2.9                                               | 5.0                             |
| South Africa | С       | 0<br>32<br>48<br>48             | none<br>L74I, <b>G118R</b><br><b>G118R</b><br>T97A, <b>G118R</b>                  | 80<br>35<br>21<br>17               | 1.7 ± 0.22<br>18 ± 6.0<br>46 ± 18<br>105 ± 78                        | 11<br>27<br>62                  |
| Brazil       | В       | 0<br>29<br>29<br>29<br>29<br>29 | none G118R R263K G118R, R263K E92Q, N155H E92Q                                    | 101<br>21<br>48<br>4.0<br>27<br>47 | 2.6 ± 0.21<br>24 ± 11<br>5.9 ± 2.2<br>UTDe<br>10 ± 1.5<br>4.9 ± 0.48 | 9.2<br>2.3<br>UTD<br>3.8<br>1.9 |
| Brazil       | В       | 0<br>51<br>51<br>51             | none<br><b>G118R</b> , E138K, V151I<br><b>G118R</b> , E138K<br>T97A, <b>N155H</b> | 71<br>42<br>35                     | 2.0 ± 0.45<br>19 ± 1.9<br>23 ± 5.2<br>3.3 ± 0.74                     | 9.5<br>9.6<br>1.4               |
| Kenya        | Α       | 0<br>96                         | none<br>E138K, <b>Q148K</b>                                                       | 25<br>47                           | 2.4 ± 0.73<br><b>58 ± 11</b>                                         | 24                              |
| Brazil       | F       | 0<br>139                        | none<br>T66I, <b>G118R</b> , E138A                                                | 33<br>13                           | 3.2 ± 1.2<br><b>55 ± 19</b>                                          | 17                              |
| Kenya        | Α       | 0<br>144                        | none<br><b>R263K</b>                                                              | 88<br>58                           | 1.5 ± 0.28<br><b>5.5 ± 0.92</b>                                      | 3.7                             |
| USA          | В       | 0<br>192                        | none<br>L74M, <b>G118R</b>                                                        | 53<br>11                           | 2.5 ± 0.49<br>67 ± 5.9                                               | 27                              |

<sup>&</sup>lt;sup>a</sup> Replication capacity as % HIV-1<sub>NL4-3</sub>; <sup>b</sup> Mean ± SD; <sup>c</sup> Fold change; <sup>d</sup> Bold significant change (p<0.05) compared to EC<sub>50</sub> for week-0 clone; <sup>e</sup> UTD, unable to determine due to insufficient replication capacity

### **Summary**

- Viremia/virologic failure (VF) during DTG-ART was increased in participants w/ previous viremia/VF
- PDR was not associated with viremia/VF during DTG-ART
- Major DTG-resistance mutations detected at
  - High rate (24.5%) in a pediatric participants
  - Low rate (4.2%) in pregnant/breastfeeding participants
- DTG-resistance frequently selected within 12 months of DTG-ART
- Pattern of viremia (low plasma HIV RNA + ART-suppression) associated w/ DTG-resistance in children
- Phenotypic resistance concordant within two most frequent Major DTG-resistance mutations
  - G118R and R263K

### **Conclusions**

- Frequencies of VF (31%; 95% CI 25, 38) and DTG-resistance (24.5%; 95% CI 14, 38) in P1093 are greater than most other adult/pediatric cohorts in clinical trials
  - Likely due to patterns of non-adherence / viremia
  - Potentially due to length of study/follow-up
- Despite DTG's higher barrier to drug resistance vs. NNRTI-based ART
  - DTG-resistance can be selected ≤12 months; which has implications for continuing DTG despite viremia
  - DTG- based ART may need to be combined with tenofovir or other ARV with long  $t_{1/2}$  to maximize barrier to resistance; which has implications for children

# Acknowledgements

#### Frenkel Lab

Lisa Frenkel Sheila Styrchak Marley Bishop Ingrid Beck Samantha Hardy

#### **Mullins Lab**

Jim Mullins Dylan Westfall Wenjie Deng Lennie Chen

#### **Gottlieb Lab**

Geoffrey Gottlieb Robert Smith Robbie Nixon

### UW Epidemiology

Stephen Hawes

### **UW/DREAM-SA**

Paul Drain Richard Lessells Theresa Rossouw Lousie du Toit

### **IMPAACT Study Participants**

#### **IMPAACT P1093 Team**

Theodore Ruel Andrew Wiznia Kevin Knowles Cindy Vavro Kathy George Rohan Hazra Ellen Townley

#### **IMPAACT 2010 Team**

Shahin Lockman
Lameck Chinula
Kevin Knowles
Katie McCarthy
Anne Coletti
Patrick Jean-Philippe
Nahida Chakhtoura

#### **IMPAACT SDAC**

Sean Brummel Lauren Ziemba Joel Zhang

### **UW/DREAM-Kenya**

Carey Farquhar
Loice Mbogo
Betsy Sambai
Margaret Ndegwa
Paul Macharia
David Bukusi
Brandon Guthrie
Aliza Monroe-Wise
Josh Herbeck

### **UW/Opt-4-Studies**

Rena Patel Lisa Abuogi Garoma Wakjira Shukri Hassan Nashon Yongo Francesca Odhiambo

### **Funding**

R01 Al147309 T32 Al007509

### **NIH Grant Officer**

Keith Crawford







